In-situ detection of neurotransmitter release from PC12 cells using Surface Enhanced Raman Spectroscopy
详细信息    查看全文
  • 作者:Waleed Ahmed El-Said (1) (3)
    Jeong-Woo Choi (1) (2)

    1. Interdisciplinary program of Integrated Biotechnology
    ; Sogang University ; Seoul ; 121-742 ; Korea
    3. Department of Chemistry
    ; Faculty of Science ; Assiut University ; Assiut ; 71516 ; Egypt
    2. Department of Chemical & Biomolecular Engineering
    ; Sogang University ; Seoul ; 121-742 ; Korea
  • 关键词:Raman spectroscopy ; neurotransmitter ; PC12 cell ; gold nanorods ; nanobiochip ; drug discovery
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:19
  • 期:6
  • 页码:1069-1076
  • 全文大小:790 KB
  • 参考文献:1. Taylor, S. C., E. Carpenter, M. L. Roberts, and C. Peers (1999) Potentiation of quantal catecholamine secretion by glibenclamide: Evidence for a novel role of sulphonylurea receptors in regulating the Ca(2+) sensitivity of exocytosis. / J. Neurosci. 19: 5741鈥?749.
    2. Pothos, E., M. Desmond, and D. Sulzer (1996) l鈥?,4-Dihydroxyphenylalanine increases the quantal size of exocytotic dopamine release / in vitro. / J. Neurochem. 66: 629鈥?36. CrossRef
    3. Zachor, D. A., J. F. Moore, C. Brezausek, A. Theibert, and A. K. Percy (2000) Cocaine inhibits NGF-induced PC12 cells differentiation through D1-type dopamine receptors. / Brain Res. 869: 85鈥?7. CrossRef
    4. Presse, F., B. Cardona, L. Borsu, and J.-L. Nahon (1997) Lithium increases melanin-concentrating hormone mRNA stability and inhibits tyrosine hydroxylase gene expression in PC12 cells. / Mol. Brain Res. 52: 270鈥?83. CrossRef
    5. Tischler, A. S., R. L. Perlman, G. M. Morse, and B. E. Sheard (1983) Glucocorticoids increase catecholamine synthesis and storage in PC12 pheochromocytoma cell cultures. / J Neurochem. 40: 364鈥?70. CrossRef
    6. Brownell, A. L., B. G. Jenkins, and O. Isacson (1999) Dopamine imaging markers and predictive mathematical models for progressive degeneration in Parkinson鈥檚 disease. / Biomed. Pharmacother. 53: 131鈥?40. CrossRef
    7. Carr, D. B., P. O鈥橠onnell, J. P. Card, and S. R. Sesack (1999) Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens. / The J. Neurosci. 19: 11049鈥?1060.
    8. Shi, B., W. Huang, and J. Cheng (2007) Determination of neurotransmitters in PC 12 cells by microchip electrophoresis with fluorescence detection. / Electrophoresis 28: 1595鈥?600. CrossRef
    9. Steiner, J. P., T. M. Dawson, M. Fotuhi, and S. H. Snyder (1996) Immunophilin regulation of neurotransmitter release. / Mol. Med. 2: 325鈥?33.
    10. Vo, T. D. L., J.-S. Ko, S. H. Lee, S. J. Park and S. H. Hong (2013) Overexpression of / Neurospora crassa OR74A glutamate decarboxylase in / Escherichia coli for efficient GABA production. Biotechnol. / Bioproc. Eng. 18: 1062鈥?066. CrossRef
    11. Zuriani, R., S. Vigneswari, M. N. M. Azizan, M. I. A. Majid and A. A. Amirul (2013) A high throughput nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. / Biotechnol. Bioproc. Eng. 18: 472鈥?78. CrossRef
    12. Park, J. K., Z.-H. Kim, C. G. Lee, A. Synytsya, H. S. Jo, S. O. Kim, J. W. Park, and Y. I. Park (2011) Characterization and immunostimulating activity of a water-soluble polysaccharide isolated from / Haematococcus lacustris. / Biotechnol. Bioproc. Eng. 16: 1090鈥?098. CrossRef
    13. Schulze, H. G., L. S. Greek, B. B. Gorzalka, A. V. Bree, M. W. Blades, and R. F. B. Turner (1995) Artificial neural network and classical least-squares methods for neurotransmitter mixture analysis. / J. Neurosci. Methods 56: 155鈥?67. CrossRef
    14. El-Said, W. A., J.-H. Lee, B.-K. Oh, and J.-W. Choi (2011) Electrochemical sensor to detect neurotransmitter using gold nano-island coated ITO electrode. / J. Nanosci. Nanotechnol. 11: 6539鈥?543. CrossRef
    15. El-Said, W. A., T. H. Kim, C. H. Yea, H. Kim, and J. W. Choi (2011) Fabrication of gold nanoparticle modified ITO substrate to detect beta-amyloid using surface-enhanced Raman scattering. / J. Nanosci. Nanotechnol. 11: 768鈥?72. CrossRef
    16. El-Said, W. A., T.-H. Kim, H. Kim, and J.-W. Choi (2010) Detection of effect of chemotherapeutic agents to cancer cells on gold nanoflower patterned substrate using surface-enhanced Raman scattering and cyclic voltammetry. / Biosens. Bioelectron. 26: 1486鈥?492. CrossRef
    17. Chen, J., J. Jiang, X. Gao, G. Liu, G. Shen, and R. Yu (2008) A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy. / Chem. (Weinheim an der Bergstrasse, Germany). 14: 8374鈥?382.
    18. Talley, C. E., L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser (2004) Intracellular pH sensors based on surface-enhanced Raman scattering. / Anal. Chem. 76: 7064鈥?068. CrossRef
    19. Wang, Z., A. Bonoiu, M. Samoc, Y. Cui, and P. N. Prasad (2008) Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. / Biosens. Bioelectron. 23: 886鈥?91. CrossRef
    20. Nowak-Lovato, K. L. and K. D. Rector (2012) Live cells as dynamic laboratories: Time lapse raman spectral microscopy of nanoparticles with both IgE targeting and pH-sensing functions. / Int. J. Anal. Chem. 2012: 390182. CrossRef
    21. El-Said, W. A., T. H. Kim, H. Kim, and J. W. Choi (2011) Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering. / PloS one. 6: e15836. CrossRef
    22. Orendorff, C. J., L. Gearheart, N. R. Jana, and C. J. Murphy (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. / Physic. Chem. Chem. Phys. 8: 165鈥?70. CrossRef
    23. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz (2002) The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. / J. Phys. Chem. B. 107: 668鈥?77. CrossRef
    24. Niesen, B., B. P. Rand, P. Van Dorpe, H. Shen, B. Maes, J. Genoe, and P. Heremans (2010) Excitation of multiple dipole surface plasmon resonances in spherical silver nanoparticles. / Optics Exp. 18: 19032鈥?9038. CrossRef
    25. Huang, H., L. Zhu, B. R. Reid, G. P. Drobny, and P. B. Hopkins (1995) Solution structure of a cisplatin-induced DNA interstrand cross-link. / Science 270: 1842鈥?845. CrossRef
    26. Ta, L. E., L. Espeset, J. Podratz, and A. J. Windebank (2006) Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum鈥揇NA binding. / Neurotoxicol. 27: 992鈥?002. CrossRef
    27. Kasabdji, D., V. Shanmugam, and A. Rathinavelu (1996) Effect of cisplatin on dopamine release from PC12 cells. / Life Sci. 59: 1793鈥?801. CrossRef
    28. Peng, S., J. M. McMahon, G. C. Schatz, S. K. Gray, and Y. Sun (2010) Reversing the size-dependence of surface plasmon resonances. / Proc. Natl. Acad. Sci. U.S.A. 107: 14530鈥?4534. CrossRef
    29. Kim, J., J. Lee, S. Kwon, and S. Jeong (2009) Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. / J. Nanosci. Nanotechnol. 9: 1098鈥?102. CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean Society for Biotechnology and Bioengineering
  • ISSN:1976-3816
文摘
Rat pheochromocytoma PC12 cells have frequently been used as a dopaminergic neuron model due to their various functions, including the synthesis, storage, and secretion of catecholamines. Furthermore, PC12 cells release a measurable amount of dopamine (DA) in response to some chemicals. PC12 cells are thus considered to be one of the most common invitro models for studying neurotransmitter release. Here, we applied Surface-enhanced Raman Spectroscopy (SERS) to determine with high sensitivity the in-situ short-time effects of cisplatin (cisdiamine- dichloroplatinum), bisphenol-A, and cyclophosphamide on the extracellular DA level released from PC12 cells. In addition, using the SERS technique, changes in the biochemical composition of the PC12 cell lysates were investigated to determine the intracellular DA level. Gold nano-patterned substrates were fabricated based on electrochemical deposition of Au nanorods onto ITO substrates; these substrates were then used as SERS-active surfaces. The Raman spectroscopy results demonstrated that the changes in the Raman spectra depending on the treatment agent were in agreement with the HPLC results on the extracellular DA level. Therefore, the SERS technique can overcome the limitations of other detection techniques, and can be used with cellular nanoarrays to study the effect of a wide range of chemicals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700