Finite-Horizon Parameterizing Manifolds, and Applications to Suboptimal Control of Nonlinear Parabolic PDEs
详细信息    查看全文
  • 作者:Micka毛l D. Chekroun (1) (2)
    Honghu Liu (2)

    1. Department of Mathematics
    ; University of Hawai鈥榠 at M膩noa ; Honolulu ; HI ; 96822 ; USA
    2. Department of Atmospheric & Oceanic Sciences
    ; University of California ; Los Angeles ; CA ; 90095-1565 ; USA
  • 关键词:Parabolic optimal control problems ; Low ; order models ; Error estimates ; Burgers ; type equation ; Backward揻orward systems
  • 刊名:Acta Applicandae Mathematicae
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:135
  • 期:1
  • 页码:81-144
  • 全文大小:2,738 KB
  • 参考文献:1. Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303?25 (1990)
    2. Amann, H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. De Gruyter Studies in Mathematics, vol.聽13. Walter de Gruyter & Co., Berlin (1990)
    3. Armaou, A., Christofides, P.D.: Feedback control of the Kuramoto揝ivashinsky equation. Physica D 137(1-2), 49?1 (2000)
    4. Armaou, A., Christofides, P.D.: Dynamic optimization of dissipative PDE systems using nonlinear order reduction. Chem. Eng. Sci. 57(24), 5083?114 (2002)
    5. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Classics in Applied Mathematics, vol.聽13. SIAM, Philadelphia (1995)
    6. Atwell, J.A., King, B.B.: Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math. Comput. Model. 33, 1?9 (2001)
    7. Baker, J., Armaou, A., Christofides, P.D.: Nonlinear control of incompressible fluid flow: application to Burgers?equation and 2D channel flow. J. Math. Anal. Appl. 252, 230?55 (2000)
    8. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton揓acobi揃ellman Equations. Springer, Berlin (2008)
    9. Beeler, S.C., Tran, H.T., Banks, H.T.: Feedback control methodologies for nonlinear systems. J. Optim. Theory Appl. 107(1), 1?3 (2000)
    10. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems. Springer, Berlin (2007)
    11. Berestycki, H., Kamin, S., Sivashinsky, G.: Metastability in a flame front evolution equation. Interfaces Free Bound. 3(4), 361?92 (2001)
    12. Bergmann, M., Cordier, L.: Optimal control of the cylinder wake in the laminar regime by trust-region methods and pod reduced-order models. J. Comput. Phys. 227(16), 7813?840 (2008)
    13. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21(2), 193?07 (1998)
    14. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. Advances in Design and Control, vol.聽19. SIAM, Philadelphia (2010)
    15. Bewley, T.R., Moin, P., Temam, R.: DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179?25 (2001)
    16. Bewley, T.R., Temam, R., Ziane, M.: A general framework for robust control in fluid mechanics. Physica D 138(3), 360?92 (2000)
    17. Bonnans, F.J., Martinon, P., Gr茅lard, V.: Bocop攁 collection of examples. Tech. Rep. RR-8053, INRIA (2012). http://hal.inria.fr/hal-00726992
    18. Bonnard, B., Chyba, M.: Singular Trajectories and Their Role in Control Theory. Math茅matiques & Applications (Berlin), vol.聽40. Springer, Berlin (2003)
    19. Bonnard, B., Faubourg, L., Tr茅lat, E.: M茅canique C茅leste et Contr么le des V茅hicules Spatiaux. Math茅matiques & Applications (Berlin), vol.聽51. Springer, Berlin (2006)
    20. Boscain, U., Piccoli, B.: Optimal Syntheses for Control Systems on 2-D Manifolds. Math茅matiques & Applications (Berlin), vol.聽43. Springer, Berlin (2004)
    21. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)
    22. Brunovsk媒, P.: Controlling the dynamics of scalar reaction diffusion equations by finite-dimensional controllers. In: Modelling and Inverse Problems of Control for Distributed Parameter Systems, Laxenburg, 1989. Lecture Notes in Control and Inform. Sci., vol.聽154, pp.聽22?7. Springer, Berlin (1991)
    23. Bryson, A.E. Jr., Ho, Y.C.: Applied Optimal Control. Hemisphere Publishing Corp., Washington (1975)
    24. Cannarsa, P., Tessitore, M.E.: Infinite-dimensional Hamilton揓acobi equations and Dirichlet boundary control problems of parabolic type. SIAM J. Control Optim. 34(6), 1831?847 (1996)
    25. Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems. Applied Mathematical Sciences, vol.聽182. Springer, New York (2013)
    26. Chekroun, M.D., Liu, H., Wang, S.: Approximation of Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs I. Springer Briefs in Mathematics. Springer, New York (2014). To appear
    27. Chekroun, M.D., Liu, H., Wang, S.: Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear SPDEs II. Springer Briefs in Mathematics. Springer, New York (2014). To appear
    28. Chekroun, M.D., Simonnet, E., Ghil, M.: Stochastic climate dynamics: random attractors and time-dependent invariant measures. Physica D 240(21), 1685?700 (2011)
    29. Chen, C.C., Chang, H.C.: Accelerated disturbance damping of an unknown distributed system by nonlinear feedback. AIChE J. 38(9), 1461?476 (1992)
    30. Choi, H., Temam, R., Moin, P., Kim, J.: Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253, 509?43 (1993)
    31. Christofides, P.D., Armaou, A., Lou, Y., Varshney, A.: Control and Optimization of Multiscale Process Systems. Springer, Berlin (2008)
    32. Christofides, P.D., Daoutidis, P.: Nonlinear control of diffusion-convection-reaction processes. Comput. Chem. Eng. 20, S1071揝1076 (1996)
    33. Christofides, P.D., Daoutidis, P.: Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds. J. Math. Anal. Appl. 216(2), 398?20 (1997)
    34. Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Applied Mathematical Sciences, vol.聽70. Springer, New York (1989)
    35. Crandall, M.G., Ishii, H., Lions, P.L.: User檚 guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1?7 (1992)
    36. Da Prato, G., Debussche, A.: Dynamic programming for the stochastic Burgers equation. Ann. Mat. Pura Appl. 178(1), 143?74 (2000)
    37. Da Prato, G., Debussche, A.: Dynamic programming for the stochastic Navier揝tokes equations. Mod茅l. Math. Anal. Num茅r. 34, 459?75 (2000)
    38. Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces, vol.聽293. Cambridge University Press, Cambridge (2002)
    39. Dacorogna, B.: Direct Methods in the Calculus of Variations, vol.聽78. Springer, Berlin (2007)
    40. Ded猫, L.: Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J. Sci. Comput. 32, 997?019 (2010)
    41. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol.聽19. American Mathematical Society, Providence (2010)
    42. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn揌illiard equation. Mater. Res. Soc. Symp. Proc. 529, 39?6 (1998)
    43. Fattorini, H.O.: Boundary control systems. SIAM J. Control 6(3), 349?85 (1968)
    44. Fattorini, H.O.: Infinite Dimensional Optimization and Control Theory. Encyclopedia of Mathematics and Its Applications, vol.聽62. Cambridge University Press, Cambridge (1999)
    45. Flandoli, F.: Riccati equation arising in a boundary control problem with distributed parameters. SIAM J. Control Optim. 22(1), 76?6 (1984)
    46. Foias, C., Manley, O., Temam, R.: Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. RAIRO. Anal. Num茅r. 22(1), 93?18 (1988)
    47. Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73(2), 309?53 (1988)
    48. Franke, T., Hoppe, R.H.W., Linsenmann, C., Wixforth, A.: Projection based model reduction for optimal design of the time-dependent Stokes system. In: Constrained Optimization and Optimal Control for Partial Differential Equations, pp.聽75?8. Springer, Berlin (2012)
    49. Fursikov, A.V.: Optimal Control of Distributed Systems: Theory and Applications. Translations of Mathematical Monographs, vol.聽187. Am. Math. Soc., Providence (2000)
    50. Grepl, M.A., K盲rcher, M.: Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Acad. Sci., Ser. 1 Math. 349(15), 873?77 (2011)
    51. Gunzburger, M.: Adjoint equation-based methods for control problems in incompressible, viscous flows. Flow Turbul. Combust. 65(3-4), 249?72 (2000)
    52. Gunzburger, M.D.: Sensitivities, adjoints and flow optimization. Int. J. Numer. Methods Fluids 31(1), 53?8 (1999)
    53. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol.聽840. Springer, Berlin (1981)
    54. Hinze, M., Kunisch, K.: On suboptimal control strategies for the Navier揝tokes equations. In: ESAIM: Proceedings, vol.聽4, pp.聽181?98 (1998)
    55. Hinze, M., Kunisch, K.: Three control methods for time-dependent fluid flow. Flow Turbul. Combust. 65, 273?98 (2000)
    56. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE constraints. In: Mathematical Modelling: Theory and Applications, vol.聽23. Springer, Berlin (2009)
    57. Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Dimension Reduction of Large-Scale Systems. Lect. Notes Comput. Sci. Eng., vol.聽45, pp.聽261?06. Springer, Berlin (2005)
    58. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press, Cambridge (2012)
    59. Hsia, C.H., Wang, X.: On a Burgers?type equation. Discrete Contin. Dyn. Syst., Ser. B 6(5), 1121?139 (2006)
    60. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications, vol.聽15. SIAM, Philadelphia (2008)
    61. Ito, K., Kunisch, K.: Reduced-order optimal control based on approximate inertial manifolds for nonlinear dynamical systems. SIAM J. Numer. Anal. 46(6), 2867?891 (2008)
    62. Ito, K., Ravindran, S.: Optimal control of thermally convected fluid flows. SIAM J. Sci. Comput. 19(6), 1847?869 (1998)
    63. Ito, K., Ravindran, S.S.: Reduced basis method for optimal control of unsteady viscous flows. Int. J. Comput. Fluid Dyn. 15(2), 97?13 (2001)
    64. Ito, K., Schroeter, J.D.: Reduced order feedback synthesis for viscous incompressible flows. Math. Comput. Model. 33, 173?92 (2001)
    65. Keller, H.B.: Numerical Solution of Two Point Boundary Value Problems. Regional Conference Series in Applied Mathematics, vol.聽24. SIAM, Philadelphia (1976)
    66. Kierzenka, J., Shampine, L.F.: A BVP solver based on residual control and the Matlab PSE. ACM Trans. Math. Softw. 27(3), 299?16 (2001)
    67. Kirk, D.E.: Optimal Control Theory: An Introduction. Dover, New York (2012)
    68. Knowles, G.: An Introduction to Applied Optimal Control. Mathematics in Science and Engineering, vol.聽159. Academic Press, New York (1981)
    69. Kokotovi膰, P., Khalil, H.K., O橰eilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Classics in Applied Mathematics, vol.聽25. SIAM, Philadelphia (1999)
    70. Kokotovic, P., O橫alley, R. Jr., Sannuti, P.: Singular perturbations and order reduction in control theory攁n overview. Automatica 12(2), 123?32 (1976)
    71. Kokotovic, P.V.: Applications of singular perturbation techniques to control problems. SIAM Rev. 26(4), 501?50 (1984)
    72. Kokotovic, P.V., Sannuti, P.: Singular perturbation method for reducing the model order in optimal control design. IEEE Trans. Autom. Control 13(4), 377?84 (1968)
    73. Krstic, M., Magnis, L., Vazquez, R.: Nonlinear control of the viscous Burgers equation: trajectory generation, tracking, and observer design. J. Dyn. Syst. Meas. Control 131(2), 021012 (2009), 8聽pp.
    74. Kunisch, K., Volkwein, S.: Control of the Burgers?equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102, 345?71 (1999)
    75. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492?15 (2002)
    76. Kunisch, K., Volkwein, S., Xie, L.: HJB-POD-based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3(4), 701?22 (2004)
    77. Lebiedz, D., Rehberg, M.: A numerical slow manifold approach to model reduction for optimal control of multiple time scale ODE (2013). ArXiv preprint arXiv:1302.1759
    78. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)
    79. Lions, J.L.: Some Aspects of the Optimal Control of Distributed Parameter Systems. SIAM, Philadelphia (1972)
    80. Lions, J.L.: Perturbations Singuli猫res dans les Probl猫mes aux Limites et en Contr么le Optimal. Lecture Notes in Mathematics, vol.聽323. Springer, Berlin (1973)
    81. Lions, J.L.: Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30(1), 1?8 (1988)
    82. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkh盲user, Basel (1995)
    83. Ly, H.V., Tran, H.T.: Modeling and control of physical processes using proper orthogonal decomposition. Math. Comput. Model. 33, 223?36 (2001)
    84. Ma, T., Wang, S.: Phase Transition Dynamics. Springer, Berlin (2014)
    85. Medjo, T.T., Tebou, L.T.: Adjoint-based iterative method for robust control problems in fluid mechanics. SIAM J. Numer. Anal. 42(1), 302?25 (2004)
    86. Medjo, T.T., Temam, R., Ziane, M.: Optimal and robust control of fluid flows: some theoretical and computational aspects. Appl. Mech. Rev. 61(1), 010802 (2008), 23聽pp.
    87. Motte, I., Campion, G.: A slow manifold approach for the control of mobile robots not satisfying the kinematic constraints. IEEE Trans. Robot. Autom. 16(6), 875?80 (2000)
    88. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Macmillan & Co., New York (1964). Translated by D.E. Brown. A聽Pergamon Press Book
    89. Ravindran, S.: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer. Methods Fluids 34(5), 425?48 (2000)
    90. Ravindran, S.S.: Adaptive reduced-order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput. 23(6), 1924?942 (2002)
    91. Roberts, S.M., Shipman, J.S.: Two-Point Boundary Value Problems: Shooting Methods. Am. Elsevier, New York (1972)
    92. Rosa, R.: Exact finite dimensional feedback control via inertial manifold theory with application to the Chafee揑nfante equation. J. Dyn. Differ. Equ. 15(1), 61?6 (2003)
    93. Rosa, R., Temam, R.: Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory. In: Foundations of Computational Mathematics, Rio de Janeiro, 1997, pp.聽382?91. Springer, Berlin (1997)
    94. Sano, H., Kunimatsu, N.: An application of inertial manifold theory to boundary stabilization of semilinear diffusion systems. J. Math. Anal. Appl. 196(1), 18?2 (1995)
    95. Sch盲ttler, H., Ledzewicz, U.: Geometric Optimal Control: Theory, Methods and Examples. Interdisciplinary Applied Mathematics, vol.聽38. Springer, New York (2012)
    96. Shvartsman, S.Y., Kevrekidis, I.G.: Nonlinear model reduction for control of distributed systems: a聽computer-assisted study. AIChE J. 44(7), 1579?595 (1998)
    97. Temam, R.: Navier揝tokes Equations: Theory and Numerical Analysis. Am. Math. Soc., Providence (1984)
    98. Temam, R.: Inertial manifolds. Math. Intell. 12(4), 68?4 (1990)
    99. Tr茅lat, E.: Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 154(3), 713?58 (2012)
    100. Tr枚ltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Graduate Studies in Mathematics, vol.聽112. Am. Math. Soc., Providence (2010)
    101. Tr枚ltzsch, F., Volkwein, S.: POD a posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44, 83?15 (2009)
    102. Volkwein, S.: Distributed control problems for the Burgers equation. Comput. Optim. Appl. 18(2), 115?40 (2001)
    103. W盲chter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25?7 (2006)
  • 刊物主题:Mathematics, general; Computer Science, general; Theoretical, Mathematical and Computational Physics; Statistical Physics, Dynamical Systems and Complexity; Mechanics;
  • 出版者:Springer Netherlands
  • ISSN:1572-9036
文摘
This article proposes a new approach for the design of low-dimensional suboptimal controllers to optimal control problems of nonlinear partial differential equations (PDEs) of parabolic type. The approach fits into the long tradition of seeking for slaving relationships between the small scales and the large ones (to be controlled) but differ by the introduction of a new type of manifolds to do so, namely the finite-horizon parameterizing manifolds (PMs). Given a finite horizon [0,T] and a low-mode truncation of the PDE, a PM provides an approximate parameterization of the high modes by the controlled low ones so that the unexplained high-mode energy is reduced攊n a mean-square sense over [0,T]攚hen this parameterization is applied. Analytic formulas of such PMs are derived by application of the method of pullback approximation of the high-modes introduced in Chekroun et al. (2014). These formulas allow for an effective derivation of reduced systems of ordinary differential equations (ODEs), aimed to model the evolution of the low-mode truncation of the controlled state variable, where the high-mode part is approximated by the PM function applied to the low modes. The design of low-dimensional suboptimal controllers is then obtained by (indirect) techniques from finite-dimensional optimal control theory, applied to the PM-based reduced ODEs. A priori error estimates between the resulting PM-based low-dimensional suboptimal controller \(u_{R}^{\ast}\) and the optimal controller u 鈭?/sup> are derived under a second-order sufficient optimality condition. These estimates demonstrate that the closeness of \(u_{R}^{\ast}\) to u 鈭?/sup> is mainly conditioned on two factors: (i)聽the parameterization defect of a given PM, associated respectively with the suboptimal controller \(u_{R}^{\ast}\) and the optimal controller u 鈭?/sup>; and (ii)聽the energy kept in the high modes of the PDE solution either driven by \(u_{R}^{\ast}\) or u 鈭?/sup> itself. The practical performances of such PM-based suboptimal controllers are numerically assessed for optimal control problems associated with a Burgers-type equation; the locally as well as globally distributed cases being both considered. The numerical results show that a PM-based reduced system allows for the design of suboptimal controllers with good performances provided that the associated parameterization defects and energy kept in the high modes are small enough, in agreement with the rigorous results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700