Gallium-68-Labeled Anti-HER2 Single-Chain Fv Fragment: Development and In Vivo Monitoring of HER2 Expression
详细信息    查看全文
  • 作者:Masashi Ueda (1) (2) (6)
    Hayato Hisada (2)
    Takashi Temma (2)
    Yoichi Shimizu (2) (3)
    Hiroyuki Kimura (2) (4)
    Masahiro Ono (2)
    Yuji Nakamoto (5)
    Kaori Togashi (5)
    Hideo Saji (2)

    1. Radioisotopes Research Laboratory
    ; Kyoto University Hospital ; Faculty of Medicine ; Kyoto University ; Kyoto ; 606-8507 ; Japan
    2. Department of Patho-Functional Bioanalysis
    ; Graduate School of Pharmaceutical Sciences ; Kyoto University ; 46-29 Yoshida Shimoadachi-cho ; Sakyo-ku ; Kyoto ; 606-8501 ; Japan
    6. Department of Pharmaceutical Analytical Chemistry
    ; Graduate School of Medicine ; Dentistry ; and Pharmaceutical Sciences ; Okayama University ; Okayama ; 700-8530 ; Japan
    3. Central Institute of Isotope Science
    ; Hokkaido University ; Sapporo ; 060-0815 ; Japan
    4. Radioisotope Research Center of Kyoto University
    ; Kyoto ; 606-8501 ; Japan
    5. Department of Nuclear Medicine and Diagnostic Imaging
    ; Graduate School of Medicine ; Kyoto University ; Kyoto ; 606-8507 ; Japan
  • 关键词:Human epidermal growth factor receptor 2(HER2) ; Single ; chain Fv Fragment (scFv) ; Gallium ; 68 ; Positron emission tomography (PET) ; 17 ; DMAG ; Therapy
  • 刊名:Molecular Imaging and Biology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:17
  • 期:1
  • 页码:102-110
  • 全文大小:1,237 KB
  • 参考文献:1. Chua TC, Merrett ND (2012) Clinicopathologic factors associated with HER2-positive gastric cancer and its impact on survival outcomes鈥攁 systematic review. Int J Cancer 130:2845鈥?856 CrossRef
    2. Stern HM (2012) Improving treatment of HER2-positive cancers: opportunities and challenges. Sci Transl Med 4:127rv122 CrossRef
    3. McAlpine JN, Wiegand KC, Vang R et al (2009) HER2 overexpression and amplification is present in a subset of ovarian mucinous carcinomas and can be targeted with trastuzumab therapy. BMC Cancer 9:433 CrossRef
    4. Nielsen DL, Kumler I, Palshof JA, Andersson M (2013) Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Breast 22:1鈥?2 CrossRef
    5. Sauter G, Lee J, Bartlett JM et al (2009) Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol 27:1323鈥?333 CrossRef
    6. Warneke VS, Behrens HM, Boger C et al (2013) Her2/neu testing in gastric cancer: evaluating the risk of sampling errors. Ann Oncol 24:725鈥?33 CrossRef
    7. Fabi A, Di Benedetto A, Metro G et al (2011) HER2 protein and gene variation between primary and metastatic breast cancer: significance and impact on patient care. Clin Cancer Res 17:2055鈥?064 CrossRef
    8. Capala J, Bouchelouche K (2010) Molecular imaging of HER2-positive breast cancer: a step toward an individualized 'image and treat' strategy. Curr Opin Oncol 22:559鈥?66 CrossRef
    9. Tamura K, Kurihara H, Yonemori K et al (2013) 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J Nucl Med 54:1869鈥?875 CrossRef
    10. Dijkers EC, Oude Munnink TH, Kosterink JG et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87:586鈥?92 CrossRef
    11. Smith-Jones PM, Solit DB, Akhurst T et al (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22:701鈥?06 CrossRef
    12. Reddy S, Shaller CC, Doss M et al (2011) Evaluation of the anti-HER2 C6.5 diabody as a PET radiotracer to monitor HER2 status and predict response to trastuzumab treatment. Clin Cancer Res 17:1509鈥?520 CrossRef
    13. Olafsen T, Kenanova VE, Sundaresan G et al (2005) Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 65:5907鈥?916 CrossRef
    14. Decristoforo C, Pickett RD, Verbruggen A (2012) Feasibility and availability of 68Ga-labelled peptides. Eur J Nucl Med Mol Imaging 39(Suppl 1):S31鈥揝40 CrossRef
    15. Jagoda EM, Lang L, Bhadrasetty V et al (2012) Immuno-PET of the hepatocyte growth factor receptor Met using the 1-armed antibody onartuzumab. J Nucl Med 53:1592鈥?600 CrossRef
    16. Vosjan MJ, Perk LR, Roovers RC et al (2011) Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET. Eur J Nucl Med Mol Imaging 38:753鈥?63 CrossRef
    17. Boros E, Ferreira CL, Yapp DT et al (2012) RGD conjugates of the H2dedpa scaffold: synthesis, labeling and imaging with 68Ga. Nucl Med Biol 39:785鈥?94 CrossRef
    18. Shimizu Y, Temma T, Hara I et al (2014) Micelle-based activatable probe for in vivo near-infrared optical imaging of cancer biomolecules. Nanomedicine 10:187鈥?95 CrossRef
    19. Nakase I, Konishi Y, Ueda M et al (2012) Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J Control Release 159:181鈥?88 CrossRef
    20. Ueda M, Ogawa K, Miyano A et al (2013) Development of an oxygen-sensitive degradable Peptide probe for the imaging of hypoxia-inducible factor-1-active regions in tumors. Mol Imaging Biol 15:713鈥?21 CrossRef
    21. Ueda M, Fukushima T, Ogawa K et al (2014) Synthesis and evaluation of a radioiodinated peptide probe targeting alphavbeta6 integrin for the detection of pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun 445:661鈥?66 CrossRef
    22. Kudo T, Ueda M, Konishi H et al (2011) PET imaging of hypoxia-inducible factor-1-active tumor cells with pretargeted oxygen-dependent degradable streptavidin and a novel 18鈥塅-labeled biotin derivative. Mol Imaging Biol 13:1003鈥?010 CrossRef
    23. Ono M, Cheng Y, Kimura H et al (2013) Development of novel 123I-labeled pyridyl benzofuran derivatives for SPECT imaging of beta-amyloid plaques in Alzheimer鈥檚 disease. PLoS One 8:e74104 CrossRef
    24. Adams GP, Schier R, McCall AM et al (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61:4750鈥?755
    25. Garcia-Carbonero R, Carnero A, Paz-Ares L (2013) Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol 14:e358鈥揺369 CrossRef
    26. Baum RP, Prasad V, Muller D et al (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J Nucl Med 51:892鈥?97 CrossRef
    27. Tolmachev V, Velikyan I, Sandstrom M, Orlova A (2010) A HER2-binding affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue. Eur J Nucl Med Mol Imaging 37:1356鈥?367 CrossRef
    28. Ren G, Zhang R, Liu Z et al (2009) A 2-helix small protein labeled with 68Ga for PET imaging of HER2 expression. J Nucl Med 50:1492鈥?499 CrossRef
    29. Honarvar H, Jokilaakso N, Andersson K et al (2013) Evaluation of backbone-cyclized HER2-binding 2-helix affibody molecule for in vivo molecular imaging. Nucl Med Biol 40:378鈥?86 CrossRef
    30. Kondo N, Temma T, Shimizu Y et al (2013) Miniaturized antibodies for imaging membrane type-1 matrix metalloproteinase in cancers. Cancer Sci 104:495鈥?01 CrossRef
    31. Adams GP, McCartney JE, Tai MS et al (1993) Highly specific in vivo tumor targeting by monovalent and divalent forms of 741聽F8 anti-c-erbB-2 single-chain Fv. Cancer Res 53:4026鈥?034
    32. El Hage Chahine JM, Hemadi M, Ha-Duong NT (2012) Uptake and release of metal ions by transferrin and interaction with receptor 1. Biochim Biophys Acta 1820:334鈥?47 CrossRef
    33. Pinto AC, Ades F, de Azambuja E, Piccart-Gebhart M (2013) Trastuzumab for patients with HER2 positive breast cancer: delivery, duration and combination therapies. Breast 22(Suppl 2):S152鈥揝155 CrossRef
    34. Huang D, Lu N, Fan Q et al (2013) HER2 status in gastric and gastroesophageal junction cancer assessed by local and central laboratories: Chinese results of the HER-EAGLE Study. PLoS One 8:e80290 CrossRef
    35. Ono N, Yamazaki T, Nakanishi Y et al (2012) Preclinical antitumor activity of the novel heat shock protein 90 inhibitor CH5164840 against human epidermal growth factor receptor 2 (HER2)-overexpressing cancers. Cancer Sci 103:342鈥?49 CrossRef
    36. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537鈥?49 CrossRef
    37. Chandarlapaty S, Scaltriti M, Angelini P et al (2010) Inhibitors of HSP90 block p95-HER2 signaling in Trastuzumab-resistant tumors and suppress their growth. Oncogene 29:325鈥?34 CrossRef
    38. Jhaveri K, Miller K, Rosen L et al (2012) A phase I dose-escalation trial of trastuzumab and alvespimycin hydrochloride (KOS-1022; 17 DMAG) in the treatment of advanced solid tumors. Clin Cancer Res 18:5090鈥?098 CrossRef
    39. Kramer-Marek G, Gijsen M, Kiesewetter DO et al (2012) Potential of PET to predict the response to trastuzumab treatment in an ErbB2-positive human xenograft tumor model. J Nucl Med 53:629鈥?37 CrossRef
  • 刊物主题:Imaging / Radiology;
  • 出版者:Springer US
  • ISSN:1860-2002
文摘
Purpose We aimed to develop a gallium-68 (Ga-68)-labeled single-chain variable fragment (scFv) targeting the human epidermal growth factor receptor 2 (HER2) to rapidly and noninvasively evaluate the status of HER2 expression. Procedures Anti-HER2 scFv was labeled with Ga-68 by using deferoxamine (Df) as a bifunctional chelate. Biodistribution of [68Ga]Df-anti-HER2 scFv was examined with tumor-bearing mice and positron emission tomography (PET) imaging was performed. The changes in HER2 expression after anti-HER2 therapy were monitored by PET imaging. Results [68Ga]Df-anti-HER2 scFv was obtained with high radiochemical yield after only a 5-min reaction at room temperature. The probe showed high accumulation in HER2-positive xenografts and the intratumoral distribution of radioactivity coincided with HER2-positive regions. Furthermore, [68Ga]Df-anti-HER2 scFv helped visualize HER2-positive xenografts and monitor the changes in HER2 expression after anti-HER2 therapy. Conclusion [68Ga]Df-anti-HER2 scFv could be a promising probe to evaluate HER2 status by in vivo PET imaging, unless trastuzumab is prescribed as part of the therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700