Research progress on the multidrug resistance mechanisms of osteosarcoma chemotherapy and reversal
详细信息    查看全文
  • 作者:Suoyuan Li (1)
    Wei Sun (2)
    Hongsheng Wang (3)
    Dongqing Zuo (3)
    Yingqi Hua (2)
    Zhengdong Cai (1)

    1. Department of Orthopedics
    ; Shanghai First People鈥檚 Hospital ; Nanjing Medical University ; 100 Haining Rd ; Shanghai ; 200072 ; China
    2. Department of Orthopedics
    ; Shanghai First People鈥檚 Hospital ; School of Medicine ; Shanghai Jiao Tong University ; Shanghai ; 200072 ; China
    3. Department of Orthopedics
    ; Shanghai 10th People鈥檚 Hospital ; School of Medicine ; Tongji University ; Shanghai ; 200072 ; China
  • 关键词:Osteosarcoma ; Multidrug resistance mechanisms ; Reversal
  • 刊名:Tumor Biology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:36
  • 期:3
  • 页码:1329-1338
  • 全文大小:408 KB
  • 参考文献:1. Sakamoto, A, Iwamoto, Y (2008) Current status and perspectives regarding the treatment of osteosarcoma: chemotherapy. Rev Recent Clin Trials 3: pp. 228 CrossRef
    2. Meyers, PA, Schwartz, CL, Krailo, MD, Healey, JH, Bernstein, ML, Betcher, D (2008) Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival鈥攁 report from the Children鈥檚 Oncology Group. J Clin Oncol 26: pp. 633-8 CrossRef
    3. Ottaviani, G, Jaffe, N (2009) The epidemiology of osteosarcoma. Cancer Treat Res 152: pp. 3-13 CrossRef
    4. Desandes, E (2007) Survival from adolescent cancer. Cancer Treat Rev 33: pp. 609-15 CrossRef
    5. Yang, C, Gao, R, Wang, J, Yuan, W, Wang, C, Zhou, X (2014) High-mobility group nucleosome-binding domain 5 increases drug resistance in osteosarcoma through upregulating autophagy. Tumour Biol 35: pp. 6357-63 CrossRef
    6. Lourda, M, Trougakos, IP, Gonos, ES (2007) Development of resistance to chemotherapeutic drugs in human osteosarcoma cell lines largely depends on up-regulation of clusterin/apolipoprotein J. Int J Cancer 120: pp. 611-22 CrossRef
    7. Limtrakul, P, Khantamat, O, Pintha, K (2005) Inhibition of P-glycoprotein function and expression by kaempferol and quercetin. J Chemother 17: pp. 86-95 CrossRef
    8. Wessler, JD, Grip, LT, Mendell, J, Giugliano, RP (2013) The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol 61: pp. 2495-502 CrossRef
    9. Tiwari, KA, Sodani, K, Dai, C-L, Ashby, RC, Chen, Z-S (2011) Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol 12: pp. 570-94 CrossRef
    10. Gillet, JP, Gottesman, MM (2010) Mechanisms of multidrug resistance in cancer. Methods Mol Biol 596: pp. 47-76 CrossRef
    11. Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Drug Transporters. Springer; 2011;299鈥?23.
    12. Rajkumar, T, Yamuna, M (2008) Multiple pathways are involved in drug resistance to doxorubicin in an osteosarcoma cell line. Anticancer Drugs 19: pp. 257-65 CrossRef
    13. Serra, M, Pasello, M, Manara, MC, Scotlandi, K, Ferrari, S, Bertoni, F (2006) May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol 29: pp. 1459
    14. Windsor, RE, Strauss, SJ, Kallis, C, Wood, NE, Whelan, JS (2012) Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: a pilot study. Cancer 118: pp. 1856-67 CrossRef
    15. Baldini, N, Scotlandi, K, Barbanti-Br貌dano, G, Manara, MC, Maurici, D, Bacci, G (1995) Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med 333: pp. 1380-5 CrossRef
    16. Han, L, Wang, YF, Zhang, Y, Wang, N, Guo, XJ, Yang, JK (2012) Increased expression and function of P-glycoprotein in peripheral blood CD56+ cells is associated with the chemoresistance of non-small-cell lung cancer. Cancer Chemother Pharmacol 70: pp. 365-72 CrossRef
    17. Brambilla, D, Zamboni, S, Federici, C, Lugini, L, Lozupone, F, Milito, AD (2012) P-glycoprotein binds to ezrin at amino acid residues 149鈥?42 in the FERM domain and plays a key role in the multidrug resistance of human osteosarcoma. Int J Cancer 130: pp. 2824-34 CrossRef
    18. Matherly LH, Diop-Bove N, Goldman ID. Biological role, properties, and therapeutic applications of the reduced folate carrier (RFC-SLC19A1) and the proton-coupled folate transporter (PCFT-SLC46A1). Targeted Drug Strategies for Cancer and Inflammation. Springer; 2011;1鈥?4.
    19. Pati帽o-Garc铆a, A, Zalaca铆n, M, Marrod谩n, L, San-Juli谩n, M, Sierrases煤maga, L (2009) Methotrexate in pediatric osteosarcoma: response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J Pediatr 154: pp. 688-93 CrossRef
    20. Matherly, LH, Hou, Z, Deng, Y (2007) Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev 26: pp. 111-28 CrossRef
    21. Ifergan, I, Meller, I, Issakov, J, Assaraf, YG (2003) Reduced folate carrier protein expression in osteosarcoma: implications for the prediction of tumor chemosensitivity. Cancer 98: pp. 1958-66 CrossRef
    22. Serra, M, Reverter-Branchat, G, Maurici, D, Benini, S, Shen, J-N, Chano, T (2004) Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol 15: pp. 151-60 CrossRef
    23. Fine, RL, Chambers, TC, Sachs, CW (1996) P-glycoprotein, multidrug resistance and protein kinase C. Stem Cells 14: pp. 47-55 CrossRef
    24. Liao, C-L, Lai, K-C, Huang, A-C, Yang, J-S, Lin, J-J, Wu, S-H (2012) Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food Chem Toxicol 50: pp. 1734-40 CrossRef
    25. Hong, SH, Osborne, T, Ren, L, Briggs, J, Mazcko, C, Burkett, S (2011) Protein kinase C regulates ezrin鈥搑adixin鈥搈oesin phosphorylation in canine osteosarcoma cells. Vet Comp Oncol 9: pp. 207-18 CrossRef
    26. Bulut, G, Hong, S, Chen, K, Beauchamp, E, Rahim, S, Kosturko, G (2011) Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells. Oncogene 31: pp. 269-81 CrossRef
    27. Yu, C, Zhongliang, D (2011) Effect of protein kinase C on multidrug resistance in human osteosarcoma cells and its underlying mechanism [J]. J Third Mil Med Univ 18: pp. 005
    28. Onishi, Y, Kawamoto, T, Kishimoto, K, Hara, H, Fukase, N, Toda, M (2012) PKD1 negatively regulates cell invasion, migration and proliferation ability of human osteosarcoma. Int J Oncol 40: pp. 1839
    29. Azarova, AM, Lyu, YL, Lin, C-P, Tsai, Y-C, Lau, JY-N, Wang, JC (2007) Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc Natl Acad Sci 104: pp. 11014-9 CrossRef
    30. Nitiss, JL (2009) Targeting DNA, topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9: pp. 338-50 CrossRef
    31. Brown, GA, McPherson, JP, Gu, L, Hedley, DW, Toso, R, Deuchars, KL (1995) Relationship of DNA topoisomerase II伪 and 尾 expression to cytotoxicity of antineoplastic agents in human acute lymphoblastic leukemia cell lines. Cancer Res 55: pp. 78-82
    32. Pommier, Y, Leo, E, Zhang, H, Marchand, C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17: pp. 421-33 CrossRef
    33. Nguyen, A, Lasthaus, C, Guerin, E, Marcellin, L, Pencreach, E, Gaub, MP (2013) Role of Topoisomerases in pediatric high grade osteosarcomas: TOP2A gene is one of the unique molecular biomarkers of chemoresponse. Cancers (Basel) 5: pp. 662-75 CrossRef
    34. Townsend, DM, Tew, KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22: pp. 7369-75 CrossRef
    35. Tew, KD (1994) Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 54: pp. 4313-20
    36. Uozaki, H, Horiuchi, H, Ishida, T, Iijima, T, Imamura, T, Machinami, R (1997) Overexpression of resistance-related proteins (metallothioneins, glutathione-S-transferase 蟺, heat shock protein 27, and lung resistance-related protein) in osteosarcoma. Cancer 79: pp. 2336-44 CrossRef
    37. Wei, L, Song, X, Wang, X, Li, M (2006) Expression of MDR1 and GST-pi in osteosarcoma and soft tissue sarcoma and their correlation with chemotherapy resistance. Zhonghua zhong liu za zhi [Chin J Oncol] 28: pp. 445-8
    38. Bruheim, S, Bruland, OS, Breistol, K, Maelandsmo, GM, Fodstad, 脴 (2004) Human osteosarcoma xenografts and their sensitivity to chemotherapy. Pathol Oncol Res 10: pp. 133-41 CrossRef
    39. Pasello, M, Michelacci, F, Scionti, I, Hattinger, CM, Zuntini, M, Caccuri, AM (2008) Overcoming glutathione S-transferase P1-related cisplatin resistance in osteosarcoma. Cancer Res 68: pp. 6661-8 CrossRef
    40. Windsor, RE, Strauss, SJ, Kallis, C, Wood, NE, Whelan, JS (2012) Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma. Cancer 118: pp. 1856-67 CrossRef
    41. Li, JZ, Tian, ZQ, Jiang, SN, Feng, T (2014) Effect of variation of ABCB1 and GSTP1 on osteosarcoma survival after chemotherapy. Genet Mol Res 13: pp. 3186-92 CrossRef
    42. Yang, L-M, Li, X-H, Bao, C-F (2012) Glutathione S-transferase P1 and DNA polymorphisms with the response to chemotherapy and the prognosis of bone tumor. Asian Pac J Cancer Prev 13: pp. 5883-6 CrossRef
    43. Murata, T, Haisa, M, Uetsuka, H, Nobuhisa, T, Ookawa, T, Tabuchi, Y (2004) Molecular mechanism of chemoresistance to cisplatin in ovarian cancer cell lines. Int J Mol Med 13: pp. 865-8
    44. Wu, X, Cai, Z-D, Lou, L-M, Zhu, Y-B (2012) Expressions of p53, c-MYC, BCL-2 and apoptotic index in human osteosarcoma and their correlations with prognosis of patients. Cancer Epidemiol 36: pp. 212-6 CrossRef
    45. Nedelcu, T, Kubista, B, Koller, A, Sulzbacher, I, Mosberger, I, Arrich, F (2008) Livin and Bcl-2 expression in high-grade osteosarcoma. J Cancer Res Clin Oncol 134: pp. 237-44 CrossRef
    46. Fu, H-L, Shao, L, Wang, Q, Jia, T, Li, M, Yang, D-P (2013) A systematic review of p53 as a biomarker of survival in patients with osteosarcoma. Tumor Biol 34: pp. 3817-21 CrossRef
    47. Wong, RPC, Tsang, WP, Chau, PY, Tsang, TY, Kwok, TT (2007) p53-R273H gains new function in induction of drug resistance through down-regulation of procaspase-3. Mol Cancer Ther 6: pp. 1054-61 CrossRef
    48. Tsuchiya, H, Mori, Y, Ueda, Y, Okada, G, Tomita, K (1999) Sensitization and caffeine potentiation of cisplatin cytotoxicity resulting from introduction of wild-type p53 gene in human osteosarcoma. Anticancer Res 20: pp. 235-42
    49. Ozger, H, Eralp, L, Atalar, AC, Toker, B, Ates, LE, Sungur, M (2004) The effect of resistance-related proteins on the prognosis and survival of patients with osteosarcoma: an immunohistochemical analysis. Acta Orthop Traumatol Turc 43: pp. 28-34 CrossRef
    50. Wunder, JS, Gokgoz, N, Parkes, R, Bull, SB, Eskandarian, S, Davis, AM (2005) TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol 23: pp. 1483-90 CrossRef
    51. Bartel, DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: pp. 281-97 CrossRef
    52. Song, B, Wang, Y, Xi, Y, Kudo, K, Bruheim, S, Botchkina, GI (2009) Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 28: pp. 4065-74 CrossRef
    53. Song, B, Wang, Y, Titmus, MA, Botchkina, G, Formentini, A, Kornmann, M (2010) Research molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer 9: pp. 96 CrossRef
    54. Zhou, Y, Huang, Z, Wu, S, Zang, X, Liu, M, Shi, J (2014) miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST. J Exp Clin Cancer Res CR 33: pp. 12 CrossRef
    55. Zhang, H, Yin, Z, Ning, K, Wang, L, Guo, R, Ji, Z (2014) Prognostic value of microRNA-223/epithelial cell transforming sequence 2 signaling in patients with osteosarcoma. Hum Pathol 45: pp. 1430-6 CrossRef
    56. Housman, G, Byler, S, Heerboth, S, Lapinska, K, Longacre, M, Snyder, N (2014) Drug resistance in cancer: an overview. Cancers (Basel) 6: pp. 1769-92 CrossRef
    57. Fung, H, Demple, B (2005) A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell 17: pp. 463-70 CrossRef
    58. Wang, D, Luo, M, Kelley, MR (2004) Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther 3: pp. 679-86
    59. Caronia, D, Patino-Garcia, A, Milne, R, Zalacain-Diez, M, Pita, G, Alonso, M (2009) Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenomics J 9: pp. 347-53 CrossRef
    60. Biason, P, Hattinger, CM, Innocenti, F, Talamini, R, Alberghini, M, Scotlandi, K (2011) Nucleotide excision repair gene variants and association with survival in osteosarcoma patients treated with neoadjuvant chemotherapy. Pharmacogenomics J 12: pp. 476-83 CrossRef
    61. Hao, T, Feng, W, Zhang, J, Sun, Y-J, Wang, G (2012) Association of four ERCC1 and ERCC2 SNPs with survival of bone tumour patients. Asian Pac J Cancer Prev 13: pp. 3821-4 CrossRef
    62. Li, J, Liu, S, Wang, W, Zhang, K, Liu, Z, Zhang, C (2014) ERCC polymorphisms and prognosis of patients with osteosarcoma. Tumour Biol 35: pp. 10129-36 CrossRef
    63. Fishel, ML, Kelley, MR (2007) The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Asp Med 28: pp. 375-95 CrossRef
    64. Yang, J, Yang, D, Cogdell, D, Du, X, Li, H, Pang, Y (2010) APEX1 gene amplification and its protein overexpression in osteosarcoma: correlation with recurrence, metastasis, and survival. Technol Cancer Res Treat 9: pp. 161-9 CrossRef
    65. Wang, D, Zhong, ZY, Li, MX, Xiang, DB, Li, ZP (2007) Vector-based Ape1 small interfering RNA enhances the sensitivity of human osteosarcoma cells to endostatin in vivo. Cancer Sci 98: pp. 1993-2001 CrossRef
    66. Vangipuram, SD, Wang, ZJ, Lyman, WD (2010) Resistance of stem-like cells from neuroblastoma cell lines to commonly used chemotherapeutic agents. Pediatr Blood Cancer 54: pp. 361-8 CrossRef
    67. Jordan, CT, Guzman, ML, Noble, M (2006) Cancer stem cells. N Engl J Med 355: pp. 1253-61 CrossRef
    68. Tirino, V, Desiderio, V, d鈥橝quino, R, Francesco, F, Pirozzi, G, Galderisi, U (2008) Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS One 3: pp. e3469 CrossRef
    69. Adhikari, AS, Agarwal, N, Wood, BM, Porretta, C, Ruiz, B, Pochampally, RR (2010) CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. Cancer Res 70: pp. 4602-12 CrossRef
    70. Fujii, H, Honoki, K, Tsujiuchi, T, Kido, A, Yoshitani, K, Takakura, Y (2009) Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. Int J Oncol 34: pp. 1381-6
    71. Gangemi, R, Paleari, L, Orengo, AM, Cesario, A, Chessa, L, Ferrini, S (2009) Cancer stem cells: a new paradigm for understanding tumor growth and progression and drug resistance. Curr Med Chem 16: pp. 1688-703 CrossRef
    72. Fiore, R, Santulli, A, Drago Ferrante, R, Giuliano, M, Blasio, A, Messina, C (2009) Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment. J Cell Physiol 219: pp. 301-13 CrossRef
    73. Germann, UA, Ford, PJ, Shlyakhter, D, Mason, VS, Harding, MW (1997) Chemosensitization and drug accumulation effects of VX-710, verapamil, cyclosporin A, MS-209 and GF120918 in multidrug resistant HL60/ADR cells expressing the multidrug resistance-associated protein MRP. Anticancer Drugs 8: pp. 141-55 CrossRef
    74. Minderman, H, O鈥橪oughlin, KL, Pendyala, L, Baer, MR (2004) VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin Cancer Res 10: pp. 1826-34 CrossRef
    75. Wang, Z, Xia, Q, Cui, J, Diao, Y, Li, J (2014) Reversion of P-glycoprotein-mediated multidrug resistance by diallyl trisulfide in a human osteosarcoma cell line. Oncol Rep 31: pp. 2720-6
    76. Yang X, Yang P, Shen J, Osaka E, Choy E, Cote G et al. Prevention of multidrug resistance (MDR) in osteosarcoma by NSC23925. British Journal of Cancer. 2014.
    77. Goudarzi, KM, Nister, M, Lindstrom, MS (2014) mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels. Cancer Biol Ther 15: pp. 1499-514 CrossRef
    78. Fleuren, ED, Versleijen-Jonkers, YM, Roeffen, MH, Franssen, GM, Flucke, UE, Houghton, PJ (2014) Temsirolimus combined with cisplatin or bevacizumab is active in osteosarcoma models. Int J Cancer 135: pp. 2770-82 CrossRef
    79. Wagner LM, Fouladi M, Ahmed A, Krailo MD, Weigel B, DuBois SG et al. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children鈥檚 Oncology Group. Pediatric Blood & Cancer. 2014.
    80. Moriceau, G, Ory, B, Mitrofan, L, Riganti, C, Blanchard, F, Brion, R (2010) Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (Everolimus): pivotal role of the prenylation process. Cancer Res 70: pp. 10329-39 CrossRef
    81. Pasello, M, Manara, MC, Michelacci, F, Fanelli, M, Hattinger, CM, Nicoletti, G (2011) Targeting glutathione-S transferase enzymes in musculoskeletal sarcomas: a promising therapeutic strategy. Anal Cell Pathol 34: pp. 131-45 CrossRef
    82. He, H, Ni, J, Huang, J (2014) Molecular mechanisms of chemoresistance in osteosarcoma (Review). Oncol Lett 7: pp. 1352
    83. Mei, J, Zhu, X, Wang, Z, Wang, Z (2014) VEGFR, RET, and RAF/MEK/ERK pathway take part in the inhibition of osteosarcoma MG63 cells with sorafenib treatment. Cell Biochem Biophys 69: pp. 151-6 CrossRef
    84. Pignochino, Y, Grignani, G, Cavalloni, G, Motta, M, Tapparo, M, Bruno, S (2009) Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol Cancer 8: pp. 118 CrossRef
    85. Susa, M, Iyer, AK, Ryu, K, Choy, E, Hornicek, FJ, Mankin, H (2010) Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma. PLoS One 5: pp. e10764 CrossRef
    86. Duan, Z, Brakora, KA, Seiden, MV (2004) Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther 3: pp. 833-8
    87. Rousseau, J, Escriou, V, Perrot, P, Picarda, G, Charrier, C, Scherman, D (2010) Advantages of bioluminescence imaging to follow siRNA or chemotherapeutic treatments in osteosarcoma preclinical models. Cancer Gene Ther 17: pp. 387-97 CrossRef
    88. Fu, Z, Deng, B, Liao, Y, Shan, L, Yin, F, Wang, Z (2013) The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer 13: pp. 580 CrossRef
    89. Degterev, A, Hitomi, J, Germscheid, M, Ch鈥檈n, IL, Korkina, O, Teng, X (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4: pp. 313-21 CrossRef
    90. He, S, Wang, L, Miao, L, Wang, T, Du, F, Zhao, L (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-伪. Cell 137: pp. 1100-11 CrossRef
    91. Zhang, D-W, Shao, J, Lin, J, Zhang, N, Lu, B-J, Lin, S-C (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325: pp. 332-6 CrossRef
    92. Dhule, SS, Penfornis, P, Frazier, T, Walker, R, Feldman, J, Tan, G (2012) Curcumin-loaded 纬-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine: Nanotechnol Biol Med 8: pp. 440-51 CrossRef
  • 刊物主题:Cancer Research;
  • 出版者:Springer Netherlands
  • ISSN:1423-0380
文摘
Osteosarcoma (OS) is the most common and aggressive primary malignant type of bone cancer in children and adolescents. Chemotherapy is one of the most important treatments for OS. Although cancer therapy has improved over the past few decades, survival outcomes for OS patients remain unsatisfactory. One of the primary reasons for the failure of current treatments is that patients with stage IV cancer often develop resistance to anticancer agents. This article will review multidrug resistance (MDR) mechanisms of OS and strategies for overcoming resistance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700