Fighting against kidney diseases with small interfering RNA: opportunities and challenges
详细信息    查看全文
  • 作者:Cheng Yang (1) (2)
    Chao Zhang (1) (2)
    Zitong Zhao (1) (2)
    Tongyu Zhu (1) (2)
    Bin Yang (3) (4) (5)

    1. Department of Urology
    ; Zhongshan Hospital ; Fudan University ; Shanghai ; China
    2. Shanghai Key Laboratory of Organ Transplantation
    ; Shanghai ; China
    3. Transplant Group
    ; Department of Infection ; Immunity and Inflammation ; University Hospitals of Leicester ; University of Leicester ; Leicester ; UK
    4. Department of Nephrology
    ; Affiliated Hospital of Nantong University ; Nantong ; China
    5. Basic Medical Research Centre
    ; Medical School of Nantong University ; Nantong ; China
  • 关键词:Small interfering RNA ; Kidney disease ; Delivery ; Off ; target effect and compensative response
  • 刊名:Journal of Translational Medicine
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:13
  • 期:1
  • 全文大小:1,096 KB
  • 参考文献:1. Fire, A, Xu, S, Montgomery, MK, Kostas, SA, Driver, SE, Mello, CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: pp. 806-811 CrossRef
    2. Brosnan, CA, Voinnet, O (2011) Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol 14: pp. 580-587 CrossRef
    3. Pantaleo, V (2011) Plant RNA silencing in viral defence. Adv Exp Med Biol 722: pp. 39-58 CrossRef
    4. Dang, Y, Yang, Q, Xue, Z, Liu, Y (2011) RNA interference in fungi: pathways, functions, and applications. Eukaryot Cell 10: pp. 1148-1155 CrossRef
    5. Doi, N, Zenno, S, Ueda, R, Ohki-Hamazaki, H, Ui-Tei, K, Saigo, K (2003) Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol 13: pp. 41-46 CrossRef
    6. Hammond, SM, Bernstein, E, Beach, D, Hannon, GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: pp. 293-296 CrossRef
    7. Elbashir, SM, Harborth, J, Lendeckel, W, Yalcin, A, Weber, K, Tuschl, T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: pp. 494-498 CrossRef
    8. Wang, Z, Rao, DD, Senzer, N, Nemunaitis, J (2011) RNA interference and cancer therapy. Pharm Res 28: pp. 2983-2995 CrossRef
    9. Petrocca, F, Lieberman, J (2011) Promise and challenge of RNA interference-based therapy for cancer. J Clin Oncol 29: pp. 747-754 CrossRef
    10. Jeker, LT, Bluestone, JA (2010) Small RNA regulators of T cell-mediated autoimmunity. J Clin Immunol 30: pp. 347-357 CrossRef
    11. Kowalski, PS, Leus, NG, Scherphof, GL, Ruiters, MH, Kamps, JA, Molema, G (2011) Targeted siRNA delivery to diseased microvascular endothelial cells: cellular and molecular concepts. IUBMB Life 63: pp. 648-658 CrossRef
    12. Latronico, MV, Condorelli, G (2009) RNA silencing: small RNA-mediated posttranscriptional regulation of mRNA and the implications for heart electropathophysiology. J Cardiovasc Electrophysiol 20: pp. 230-237 CrossRef
    13. Li, F, Mahato, RI (2011) RNA interference for improving the outcome of islet transplantation. Adv Drug Deliv Rev 63: pp. 47-68 CrossRef
    14. Yang, C, Jia, Y, Zhao, T, Xue, Y, Zhao, Z, Zhang, J (2013) Naked caspase 3 small interfering RNA is effective in cold preservation but not in autotransplantation of porcine kidneys. J Surg Res 181: pp. 342-354 CrossRef
    15. Racz, Z, Hamar, P (2008) RNA interference in research and therapy of renal diseases. Contrib Nephrol 159: pp. 78-95
    16. Chaudhary, A, Srivastava, S, Garg, S (2011) Development of a software tool and criteria evaluation for efficient design of small interfering RNA. Biochem Biophys Res Commun 404: pp. 313-320 CrossRef
    17. Elmen, J, Thonberg, H, Ljungberg, K, Frieden, M, Westergaard, M, Xu, Y (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33: pp. 439-447 CrossRef
    18. Yang, C, Zhao, T, Zhao, Z, Jia, Y, Li, L, Zhang, Y (2014) Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model. Mol Ther 22: pp. 1817-1828 CrossRef
    19. Mook, OR, Baas, F, Wissel, MB, Fluiter, K (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 6: pp. 833-843 CrossRef
    20. Kanasty, R, Dorkin, JR, Vegas, A, Anderson, D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12: pp. 967-977 CrossRef
    21. Deng, Y, Wang, CC, Choy, KW, Du, Q, Chen, J, Wang, Q (2014) Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538: pp. 217-227 CrossRef
    22. Yang, B, Hosgood, SA, Nicholson, ML (2011) Naked small interfering RNA of caspase-3 in preservation solution and autologous blood perfusate protects isolated ischemic porcine kidneys. Transplantation 91: pp. 501-507 CrossRef
    23. Nam, BY, Paeng, J, Kim, SH, Lee, SH, Kim do, H, Kang, HY (2012) The MCP-1/CCR2 axis in podocytes is involved in apoptosis induced by diabetic conditions. Apoptosis 17: pp. 1-13 CrossRef
    24. Liu, F, Ma, XJ, Wang, QZ, Zhao, YY, Wu, LN, Qin, GJ (2014) The effect of FoxO1 on the proliferation of rat mesangial cells under high glucose conditions. Nephrol Dial Transplant 29: pp. 1879-1887 CrossRef
    25. Yang, B, Elias, JE, Bloxham, M, Nicholson, ML (2011) Synthetic small interfering RNA down-regulates caspase-3 and affects apoptosis, IL-1 beta, and viability of porcine proximal tubular cells. J Cell Biochem 112: pp. 1337-1347 CrossRef
    26. Takabatake, Y, Isaka, Y, Mizui, M, Kawachi, H, Shimizu, F, Ito, T (2005) Exploring RNA interference as a therapeutic strategy for renal disease. Gene Ther 12: pp. 965-973 CrossRef
    27. Wan, X, Fan, L, Hu, B, Yang, J, Li, X, Chen, X (2011) Small interfering RNA targeting IKKbeta prevents renal ischemia-reperfusion injury in rats. Am J Physiol Renal Physiol 300: pp. F857-F863 CrossRef
    28. Hamar, P, Song, E, Kokeny, G, Chen, A, Ouyang, N, Lieberman, J (2004) Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad Sci U S A 101: pp. 14883-14888 CrossRef
    29. Xia, Z, Abe, K, Furusu, A, Miyazaki, M, Obata, Y, Tabata, Y (2008) Suppression of renal tubulointerstitial fibrosis by small interfering RNA targeting heat shock protein 47. Am J Nephrol 28: pp. 34-46 CrossRef
    30. Cuevas, S, Zhang, Y, Yang, Y, Escano, C, Asico, L, Jones, JE (2012) Role of renal DJ-1 in the pathogenesis of hypertension associated with increased reactive oxygen species production. Hypertension 59: pp. 446-452 CrossRef
    31. Gooding, M, Browne, LP, Quinteiro, FM, Selwood, DL (2012) siRNA delivery: from lipids to cell-penetrating peptides and their mimics. Chem Biol Drug Des 80: pp. 787-809 CrossRef
    32. Amarzguioui, M, Rossi, JJ, Kim, D (2005) Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett 579: pp. 5974-5981 CrossRef
    33. Braasch, DA, Jensen, S, Liu, Y, Kaur, K, Arar, K, White, MA (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42: pp. 7967-7975 CrossRef
    34. Felgner, PL, Ringold, GM (1989) Cationic liposome-mediated transfection. Nature 337: pp. 387-388 CrossRef
    35. Gary, DJ, Puri, N, Won, YY (2007) Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release 121: pp. 64-73 CrossRef
    36. Malone, RW, Felgner, PL, Verma, IM (1989) Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A 86: pp. 6077-6081 CrossRef
    37. Molitoris, BA, Dagher, PC, Sandoval, RM, Campos, SB, Ashush, H, Fridman, E (2009) siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 20: pp. 1754-1764 CrossRef
    38. Zheng, X, Zhang, X, Sun, H, Feng, B, Li, M, Chen, G (2006) Protection of renal ischemia injury using combination gene silencing of complement 3 and caspase 3 genes. Transplantation 82: pp. 1781-1786 CrossRef
    39. Himmelfarb, J, Joannidis, M, Molitoris, B, Schietz, M, Okusa, MD, Warnock, D (2008) Evaluation and initial management of acute kidney injury. Clin J Am Soc Nephrol 3: pp. 962-967 CrossRef
    40. Zhang, D, Liu, Y, Wei, Q, Huo, Y, Liu, K, Liu, F (2014) Tubular p53 regulates multiple genes to mediate AKI. J Am Soc Nephrol 25: pp. 2278-2289 CrossRef
    41. Rabb, H, O鈥橫eara, YM, Maderna, P, Coleman, P, Brady, HR (1997) Leukocytes, cell adhesion molecules and ischemic acute renal failure. Kidney Int 51: pp. 1463-1468 CrossRef
    42. Sheridan, AM, Bonventre, JV (2000) Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens 9: pp. 427-434 CrossRef
    43. Vaseva, AV, Moll, UM (2009) The mitochondrial p53 pathway. Biochim Biophys Acta 1787: pp. 414-420 CrossRef
    44. Tsapepas, DS, Powell, JT, Martin, ST, Hardy, MA, Ratner, LE (2013) An update to managing renal transplant ischemia reperfusion injury: novel therapies in the pipeline. Clin Transplant 27: pp. 647-648
    45. Powell, JT, Tsapepas, DS, Martin, ST, Hardy, MA, Ratner, LE (2013) Managing renal transplant ischemia reperfusion injury: novel therapies in the pipeline. Clin Transplant 27: pp. 484-491 CrossRef
    46. Fujino, T, Muhib, S, Sato, N, Hasebe, N (2013) Silencing of p53 RNA through transarterial delivery ameliorates renal tubular injury and downregulates GSK-3beta expression after ischemia-reperfusion injury. Am J Physiol Renal Physiol 305: pp. F1617-F1627 CrossRef
    47. Peng, J, Li, X, Zhang, D, Chen, JK, Su, Y, Smith, SB (2015) Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int 87: pp. 137-150 CrossRef
    48. Liu, L, Li, Y, Hu, Z, Su, J, Huo, Y, Tan, B (2012) Small interfering RNA targeting Toll-like receptor 9 protects mice against polymicrobial septic acute kidney injury. Nephron Exp Nephrol 122: pp. 51-61 CrossRef
    49. Shimizu, H, Hori, Y, Kaname, S, Yamada, K, Nishiyama, N, Matsumoto, S (2010) siRNA-based therapy ameliorates glomerulonephritis. J Am Soc Nephrol 21: pp. 622-633 CrossRef
    50. Motzer, RJ, Bander, NH, Nanus, DM (1996) Renal-cell carcinoma. N Engl J Med 335: pp. 865-875 CrossRef
    51. Ronkainen, H, Vaarala, MH, Hirvikoski, P, Ristimaki, A (2011) HuR expression is a marker of poor prognosis in renal cell carcinoma. Tumour Biol 32: pp. 481-487 CrossRef
    52. Danilin, S, Sourbier, C, Thomas, L, Lindner, V, Rothhut, S, Dormoy, V (2010) Role of the RNA-binding protein HuR in human renal cell carcinoma. Carcinogenesis 31: pp. 1018-1026 CrossRef
    53. Shang, D, Liu, Y, Yang, P, Chen, Y, Tian, Y (2012) TGFBI-promoted adhesion, migration and invasion of human renal cell carcinoma depends on inactivation of von Hippel-Lindau tumor suppressor. Urology 79: pp. 966 CrossRef
    54. Juengel, E, Dauselt, A, Makarevic, J, Wiesner, C, Tsaur, I, Bartsch, G (2012) Acetylation of histone H3 prevents resistance development caused by chronic mTOR inhibition in renal cell carcinoma cells. Cancer Lett 324: pp. 83-90 CrossRef
    55. Ge, Q, Xu, JJ, Evans, DM, Mixson, AJ, Yang, HY, Lu, PY (2009) Leveraging therapeutic potential of multi-targeted siRNA inhibitors. Future Med Chem 1: pp. 1671-1681 CrossRef
    56. Liu, K, Chen, H, You, Q, Shi, H, Wang, Z (2014) The siRNA cocktail targeting VEGF and HER2 inhibition on the proliferation and induced apoptosis of gastric cancer cell. Mol Cell Biochem 386: pp. 117-124 CrossRef
    57. Jackson, AL, Bartz, SR, Schelter, J, Kobayashi, SV, Burchard, J, Mao, M (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21: pp. 635-637 CrossRef
    58. Jackson, AL, Burchard, J, Schelter, J, Chau, BN, Cleary, M, Lim, L (2006) Widespread siRNA 鈥渙ff-target鈥?transcript silencing mediated by seed region sequence complementarity. RNA 12: pp. 1179-1187 CrossRef
    59. Jackson, AL, Linsley, PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9: pp. 57-67 CrossRef
    60. Lin, X, Ruan, X, Anderson, MG, McDowell, JA, Kroeger, PE, Fesik, SW (2005) siRNA-mediated off-target gene silencing triggered by a 7聽nt complementation. Nucleic Acids Res 33: pp. 4527-4535 CrossRef
    61. Kabilova, TO, Meschaninova, MI, Venyaminova, AG, Nikolin, VP, Zenkova, MA, Vlassov, VV (2012) Short double-stranded RNA with immunostimulatory activity: sequence dependence. Nucleic Acid Ther 22: pp. 196-204
    62. Robbins, M, Judge, A, MacLachlan, I (2009) siRNA and innate immunity. Oligonucleotides 19: pp. 89-102 CrossRef
    63. Yang, C, Li, L, Xue, Y, Zhao, Z, Zhao, T, Jia, Y (2013) Innate immunity activation involved in unprotected porcine auto-transplant kidneys preserved by naked caspase-3 siRNA. J Transl Med 11: pp. 210 CrossRef
    64. Bell, JK, Askins, J, Hall, PR, Davies, DR, Segal, DM (2006) The dsRNA binding site of human Toll-like receptor 3. Proc Natl Acad Sci U S A 103: pp. 8792-8797 CrossRef
    65. Choe, J, Kelker, MS, Wilson, IA (2005) Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309: pp. 581-585 CrossRef
    66. Alexopoulou, L, Holt, AC, Medzhitov, R, Flavell, RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: pp. 732-738 CrossRef
    67. Hornung, V, Guenthner-Biller, M, Bourquin, C, Ablasser, A, Schlee, M, Uematsu, S (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11: pp. 263-270 CrossRef
    68. Judge, AD, Sood, V, Shaw, JR, Fang, D, McClintock, K, MacLachlan, I (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23: pp. 457-462 CrossRef
    69. Sioud, M (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348: pp. 1079-1090 CrossRef
    70. Racz, Z, Godo, M, Revesz, C, Hamar, P (2011) Immune activation and target organ damage are consequences of hydrodynamic treatment but not delivery of naked siRNAs in mice. Nucleic Acid Ther 21: pp. 215-224 CrossRef
    71. Mueller, TF, Reeve, J, Jhangri, GS, Mengel, M, Jacaj, Z, Cairo, L (2008) The transcriptome of the implant biopsy identifies donor kidneys at increased risk of delayed graft function. Am J Transplant 8: pp. 78-85
    72. Wilflingseder, J, Sunzenauer, J, Toronyi, E, Heinzel, A, Kainz, A, Mayer, B (2014) Molecular Pathogenesis of Post-Transplant Acute Kidney Injury: Assessment of Whole-Genome mRNA and MiRNA Profiles. PLoS One 9: pp. e104164 CrossRef
    73. Wu, D, Zhu, D, Xu, M, Rong, R, Tang, Q, Wang, X (2011) Analysis of transcriptional factors and regulation networks in patients with acute renal allograft rejection. J Proteome Res 10: pp. 175-181 CrossRef
    74. Wu, D, Liu, X, Liu, C, Liu, Z, Xu, M, Rong, R (2014) Network analysis reveals roles of inflammatory factors in different phenotypes of kidney transplant patients. J Theor Biol 362: pp. 62-68 CrossRef
    75. Grimm, D, Streetz, KL, Jopling, CL, Storm, TA, Pandey, K, Davis, CR (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441: pp. 537-541 CrossRef
    76. Ojima, I (2008) Guided molecular missiles for tumor-targeting chemotherapy鈥揷ase studies using the second-generation taxoids as warheads. Acc Chem Res 41: pp. 108-119 CrossRef
    77. Mokhtarieh, AA, Cheong, S, Kim, S, Chung, BH, Lee, MK (1818) Asymmetric liposome particles with highly efficient encapsulation of siRNA and without nonspecific cell penetration suitable for target-specific delivery. Biochim Biophys Acta 2012: pp. 1633-1641
    78. Valencia-Serna, J, Gul-Uludag, H, Mahdipoor, P, Jiang, X, Uludag, H (2013) Investigating siRNA delivery to chronic myeloid leukemia K562 cells with lipophilic polymers for therapeutic BCR-ABL down-regulation. J Control Release 172: pp. 495-503 CrossRef
    79. Oe, Y, Christie, RJ, Naito, M, Low, SA, Fukushima, S, Toh, K (2014) Actively-targeted polyion complex micelles stabilized by cholesterol and disulfide cross-linking for systemic delivery of siRNA to solid tumors. Biomaterials 35: pp. 7887-7895 CrossRef
    80. Zhou, J, Neff, CP, Liu, X, Zhang, J, Li, H, Smith, DD (2011) Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 19: pp. 2228-2238 CrossRef
  • 刊物主题:Biomedicine general; Medicine/Public Health, general;
  • 出版者:BioMed Central
  • ISSN:1479-5876
文摘
The significant improvements in siRNA therapy have been achieved, which have great potential applications in humans. The kidney is a comparatively easy target organ of siRNA therapy due to its unique structural and functional characteristics. Here, we reviewed recent achievements in siRNA design, delivery and application with focuses on kidney diseases, in particular kidney transplant-related injuries. In addition, the strategy for increasing serum stability and immune tolerance of siRNA was also discussed. At last, the future challenges of siRNA therapy including organ/tissue/cell-specific delivery and time-controlled silence, as well as selecting therapeutic targets, were addressed as well.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700