The CJIE1 prophage of Campylobacter jejuni affects protein expression in growth media with and without bile salts
详细信息    查看全文
  • 作者:Clifford G Clark (29)
    Patrick M Chong (30)
    Stuart J McCorrister (30)
    Philippe Simon (31) (32)
    Matthew Walker (29)
    David M Lee (30) (33)
    Kimberly Nguy (29)
    Keding Cheng (30)
    Matthew W Gilmour (29)
    Garrett R Westmacott (30)

    29. Enterics Research Section
    ; Bacteriology and Enterics Program ; National Microbiology Laboratory ; Public Health Agency of Canada ; 1015 Arlington St ; Winnipeg ; Manitoba ; R3E 3R2 ; Canada
    30. Mass Spectrometry and Proteomics Core Facility
    ; National Microbiology Laboratory ; Public Health Agency of Canada ; 1015 Arlington St ; Winnipeg ; Manitoba ; R3E 3R2 ; Canada
    31. Department of Medical Microbiology
    ; University of Manitoba ; Room 543 鈥?745 Bannatyne Avenue ; Winnipeg ; Manitoba ; R3E 3J9 ; Canada
    32. Special Pathogens Program
    ; National Microbiology Laboratory ; Public Health Agency of Canada ; 1015 Arlington St ; Winnipeg ; Manitoba ; R3E 3R2 ; Canada
    33. Faculty of Pharmacy
    ; Apotex Centre ; University of Manitoba ; Winnipeg ; Manitoba ; R3E 0T5 ; Canada
  • 关键词:Campylobacter jejuni ; Prophage ; Proteomics ; iTRAQ ; Bile response ; Iron acquisition
  • 刊名:BMC Microbiology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:914 KB
  • 参考文献:1. Gaasbeek, EJ, Wagenaar, JA, Guilhabert, MR, W枚sten, MMSM, van Putten, JPM, van der Graaf-van Bloois, L, Parker, CT, van der Wal, FJ (2009) A DNase encoded by the integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni. J Bacteriol 191: pp. 2296-2306 CrossRef
    2. Gaasbeek, EJ, Wagenaar, JA, Guilhabert, MR, van Putten, JPM, Parker, CT, van der Wal, FJ (2010) Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of Campylobacter jejuni. J Bacteriol 192: pp. 936-941 CrossRef
    3. Clark, CG, Grant, CCR, Pollari, F, Marshall, B, Moses, J, Tracz, DM, Gilmour, MW (2012) Effects of the Campylobacter jejuni CJIE1 prophage homologs on adherence and invasion in culture, patient symptoms, and source of infection. BMC Microbiol 12: pp. 269 CrossRef
    4. Clark, CG (2011) Sequencing of CJIE1 prophages from Campylobacter jejuni reveals the presence of inserted and (or) deleted genes. Can J Microbiol 57: pp. 795-809 CrossRef
    5. Andersen, MT, Br酶ndsted, L, Pearson, BM, Mulholland, F, Parker, M, Pin, C, Wells, JM, Ingmer, H (2005) Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome, and phenotypic characterization of an hspR mutant. Microbiology 151: pp. 905-915 CrossRef
    6. Bi猫che, C, de Lamballerie, M, Chevret, D, Federighi, M, Tresse, O (2012) Dynamic proteome changes in Campylobacter jejuni 81鈥?76 after high pressure shock and subsequent recovery. J Proteomics 75: pp. 1144-1156 CrossRef
    7. Carrillo, CE, Taboada, E, Nash, JHE, Lanthier, P, Kelly, J, Lau, PC, Verhulp, R, Mykytczuk, O, Sy, J, Findlay, WA, Amoako, K, Gomis, S, Willson, P, Austin, JW, Potter, A, Babiuk, L, Allan, B, Szymanski, CM (2004) Genome-wide expression analysis of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J Biol Chem 279: pp. 20327-20338 CrossRef
    8. Liu, X, Gao, B, Novik, V, Gal谩n, JE (2012) Quantitative proteomics of intracellular Campylobacter jejuni reveals metabolic reprogramming. PLoS Pathog 8: pp. e1002562 CrossRef
    9. Sampathkumar, B, Napper, S, Carrillo, CD, Willson, P, Taboada, E, Nash, JHE, Potter, AA, Babiuk, LE, Allan, BJ (2006) Transcriptional and translational expression patterns associated with immobilized growth of Campylobacter jejuni. Microbiology 152: pp. 567-577 CrossRef
    10. Seal, BS, Hiett, KL, Kuntz, RL, Woolsey, R, Schegg, KM, Ard, M, Stinzi, A (2007) Proteomic analysis of a robust versus a poor chicken gastrointestinal colonizing isolate of Campylobacter jejuni. J Proteome Res 6: pp. 4582-4591 CrossRef
    11. Malmstr枚m, L, Malmstr枚m, J, Aebersold, R (2011) Quantitative proteomics of microbes: principles and applications to virulence. Proteomics 11: pp. 2947-2956 CrossRef
    12. Pieper, R, Zhang, Q, Clark, DJ, Huang, S-T, Suh, M-J, Braisted, JC, Payne, SH, Fleischmann, RD, Peterson, SN, Tzipori, S (2011) Characterizing the Escherichia coli O157:H7 proteome including protein associations with higher order assemblies. PLoS One 6: pp. e26554 CrossRef
    13. Unwin, RD, Griffiths, JR, Whetton, AD (2010) Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobarictags with 2D nano LC-MS/MS. Nat Protoc 5: pp. 1574-1582 CrossRef
    14. Soares, NC, Cabral, MP, Gayoso, C, Mallo, S, Rodriguez-Velo, P, Fern谩ndez Moreira, E, Bou, G (2010) Associating growth-phase-related changes in the proteome of Acinetobacter baumanii with increased resistance to oxidative stress. J Proteome Res 9: pp. 1951-1964 CrossRef
    15. Malik-Kale, P, Parker, CT, Konkel, ME (2008) Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J Bacteriol 190: pp. 2286-2297 CrossRef
    16. Fox, EM, Raftery, M, Goodchild, A, Mendz, GL (2007) Campylobacter jejuni response to ox-bile stress. FEMS Immunol Med Microbiol 49: pp. 165-172 CrossRef
    17. Okoli, AS, Wadstrom, T, Mendz, GL (2007) Bioinformatic study of bile responses in Campylobacteriales. FEMS Immunol Med Microbiol 49: pp. 101-123 CrossRef
    18. Barton, C, Ng, L-K, Tyler, SD, Clark, CG (2007) Temperate bacteriophages affect pulsed-field gel electrophoresis patterns of Campylobacter jejuni. J Clin Microbiol 45: pp. 386-391 CrossRef
    19. Scott, NE, Cordwell, SJ (2009) Campylobacter proteomics: guidelines, challenges and future perspectives. Expert Rev Proteomics 6: pp. 62-74 CrossRef
    20. Dasti, JI, Tareen, M, Lugert, R, Zautner, AE, Gro脽, U (2010) Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol 300: pp. 205-211 CrossRef
    21. Kim, Y-M, Ogawa, W, Tamai, E, Kuroda, T, Mizushima, T, Tsuchiya, T (2002) Purification, reconstitution, and characterization of Na+/serine symporter, SstT, of Escherichia coli. J Biochem 132: pp. 71-76 CrossRef
    22. Stahl, M, Butcher, J, Stintzi, A (2012) Nutrient acquisition and metabolism by Campylobacter jejuni. Frontiers Cell Infect Microbiol 2: pp. 5 CrossRef
    23. Jerome, JP, Bell, JA, Plovanich-Jones, AE, Barrick, JE, Brown, CT, Mansfield, LS (2011) Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host. PLoS One 6: pp. e16399 CrossRef
    24. Hwang, S, Kim, M, Ryu, S, Jeon, B (2011) Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni. PLoS One 6: pp. e22300 CrossRef
    25. Parkhill, J, Wren, B, Mungall, K, Ketley, JM, Churcher, C, Basham, D, Chillingworth, T, Davies, RM, Feltwell, T, Holroyd, S, Jagels, K, Karlyshev, AV, Moule, S, Pallens, MJ, Penn, CW, Quail, MA, Rajandream, M-A, Rutherford, KM, van Vliet, AHM, Whitehead, S, Barrell, BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: pp. 665-668 CrossRef
    26. Javed, MA, Grant, AJ, Bagnall, MC, Maskell, DJ, Newell, DG, Manning, G (2010) Transposon mutagenesis in a hyper-invasive clinical isolate of Campylobacter jejuni reveals a number of genes with potential roles in invasion. Microbiology 156: pp. 1134-1143 CrossRef
    27. Poli, VFS, Thorsen, L, Olesen, I, Wik, MT, Jespersen, L (2012) Differentiation of the virulence potential of Campylobacter jejuni strains by use of gene transcription analysis and a Caco-2 assay. Int J Food Microbiol 155: pp. 60-68 CrossRef
    28. Karlyshev, AV, Champion, OL, Churcher, C, Brisson, J-R, Jarrell, HC, Gilbert, M, Brochu, D, St. Michael, F, Wakarchuk, WW, Goodhead, I, Sanders, M, Stevens, K, White, B, Parkhill, J, Wren, BW, Szymanski, CM (2005) Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Mol Microbiol 55: pp. 90-103 CrossRef
    29. Bacon, DJ, Szymanski, CM, Burr, DH, Silver, RP, Alm, RA, Guerry, P (2001) A phase-variable capsule is involved in virulence of Campylobacter jejuni 81鈥?76. Mol Microbiol 40: pp. 769-777 CrossRef
    30. Sternberg, MJE, Tammaddoni-Nezhad, A, Lesk, VI, Kay, E, Hitchen, PG, Cootes, A, van Alphen, LB, Lamoureux, MP, Jarrell, HC, Rawlings, CJ, Soo, EC, Szymanski, CM, Dell, A, Wren, BW, Muggleton, SH (2013) Gene function hypotheses for the Campylobacter jejuni glycome generated by a logic-based approach. J Mol Biol 425: pp. 186-197 CrossRef
    31. Wolfe, AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69: pp. 12-50 CrossRef
    32. Joshua, GWP, Guthrie-Irons, C, Karlyshev, AV, Wren, BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152: pp. 387-396 CrossRef
    33. Kalmokov, M, Lanthier, P, Tremblay, T-L, Foss, M, Lau, PC, Sanders, G, Austin, J, Kelly, J, Szymanski, CM (2006) Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188: pp. 4312-4320 CrossRef
    34. Kantrowitz, ER (2012) Allostery and cooperativity in Escherichia coli aspartate carmamoyltransferase. Archiv Biochem Biophys 519: pp. 81-90 CrossRef
    35. Lipscomb, WN, Kantrowitz, ER (2012) Structure and mechanisms of Escherichia coli aspartate carbamoyltransferase. Acc Chem Res 45: pp. 444-453 CrossRef
    36. Kleine, LL, Monnet, V, Pechoux, C, Trubuil, A (2008) Role of bacterial peptidase F inferred by statistical analysis and further experimental validation. HFSP J 2: pp. 29-41 CrossRef
    37. Newton, KN, Courcelle, CT, Courcelle, J (2012) UvrD participation in nucleotide excision repair is required for the recovery of DNA synthesis following UV-induced damage in Escherichia coli. J Nucl Acids 2012: pp. 271453 CrossRef
    38. Maples, VF, Kushner, SR (1982) DNA repair in Escherichia coli: identification of the uvrD gene product. Proc Natl Acad Sci U S A 79: pp. 5616-5620 CrossRef
    39. Centore, RC, Sandler, SJ (2007) UvrD limits the number and intensities of RecA-Green Fluorescent Protein structures in Escherichia coli K-12. J Bacteriol 189: pp. 2915-2920 CrossRef
    40. Ossana, N, Mount, DW (1989) Mutations in uvrD induce the SOS response in Escherichia coli. J Bacteriol 171: pp. 303-307
    41. Fouts, DE, Mongodin, EF, Mandrell, RE, Miller, WG, Rasko, DA, Ravel, J, Brinkac, LM, DeBoy, RT, Parker, CT, Daugherty, SC, Durkin, AS, Madupu, R, Sullivan, SA, Shetty, JU, Ayodeji, MA, Shvartsbeyn, A, Schatz, SC, Badger, JH, Fraser, CM, Nelson, KE (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3: pp. e15 CrossRef
    42. Lertsethtakarn, P, Ottemann, KM, Hendrixson, DR (2011) Motility and chemotaxis in Campylobacter and Helicobacter. Ann Rev Microbiol 65: pp. 398-410 CrossRef
    43. Atack, JM, Kelly, DJ (2009) Oxidative stress in Campylobacter jejuni: responses, resistance, and regulation. Future Microbiol 4: pp. 677-690 CrossRef
    44. Holmes, K, Mulholland, F, Pearson, BM, Pin, C, McNicholl-Kennedy, J, Ketley, JM, Wells, JM (2005) Campylobacter jejuni gene expression in response to iron limitatio and the role of Fur. Microbiology 151: pp. 243-257 CrossRef
    45. Miller, CE, Williams, PH, Ketley, JM (2009) Pumping iron: mechanisms for iron uptake by Campylobacter. Microbiology 155: pp. 3157-3165 CrossRef
    46. Miller, CE, Rock, JD, Ridley, KA, Williams, PH, Ketley, JM (2008) Utilization of lactoferrin-bound and transferrin-bound iron by Campylobacter jejuni. J Bacteriol 190: pp. 1900-1911 CrossRef
    47. Palyada, K, Threadgill, D, Stintzi, A (2004) Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186: pp. 4714-4729 CrossRef
    48. Raphael, BH, Joens, LA (2003) FeoB is not required for ferrous iron uptake in Campylobacter jejuni. Can J Microbiol 49: pp. 727-731 CrossRef
    49. He, Y, Frye, JG, Strobaugh, TP, Chen, C-Y (2008) Analysis of AI-2/LuxS-dependent transcription in Campylobacter jejuni strain 81鈥?76. Foodborne Pathog Dis 5: pp. 399-415 CrossRef
    50. van Vliet, AHM, Baillon, M-LA, Penn, CW, Ketley, JM (2001) The iron-induced ferredoxin FdxA of Campylobacter jejuni is involved in aerotolerance. FEMS Microbiol Lett 196: pp. 189-193 CrossRef
    51. Kaakoush, NO, Miller, WG, de Reuse, H, Mendz, GL (2007) Oxygen requirement and tolerance of Campylobacter jejuni. Res Microbiol 158: pp. 644-650 CrossRef
    52. Scott, AE, Timms, AR, Connerton, PL, Loc Carrillo, C, Adzfa Radzum, K, Connerton, IF (2007) Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog 3: pp. e119 CrossRef
    53. Clark, CG, Bryden, L, Cuff, W, Johnson, PL, Jamieson, F, Ciebin, B, Wang, G (2005) Use of the Oxford multilocus sequence typing protocol and sequencing of the flagellin short variable region to characterize isolates from a large outbreak of waterborne Campylobacter sp. strains in Walkerton, Ontario, Canada. J Clin Microbiol 43: pp. 2080-2091 CrossRef
    54. Wi艣niewski, JR, Zougman, A, Nagaraj, N, Mann, M (2009) Universal sample preparation for proteome analysis. Nat Methods 6: pp. 359-362 CrossRef
    55. Vizcaino, JA, Cote, RG, Csordas, A, Dianes, JA, Fabregat, A, Foster, JM, Griss, J, Alpi, E, Birim, M, Contell, J, O鈥橩elly, G, Schoenegger, A, Ovelleiro, D, Perez-Riverol, Y, Reisinger, F, Rios, D, Wang, R, Hermjakob, H (2013) The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41: pp. D1063-D1069 CrossRef
  • 刊物主题:Microbiology; Biological Microscopy; Fungus Genetics; Parasitology; Virology; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2180
文摘
Background The presence of Campylobacter jejuni temperate bacteriophages has increasingly been associated with specific biological effects. It has recently been demonstrated that the presence of the prophage CJIE1 is associated with increased adherence and invasion of C. jejuni isolates in cell culture assays. Results Quantitative comparative proteomics experiments were undertaken using three closely related isolates with CJIE1 and one isolate without CJIE1 to determine whether there was a corresponding difference in protein expression levels. Initial experiments indicated that about 2% of the total proteins characterized were expressed at different levels in isolates with or without the prophage. Some of these proteins regulated by the presence of CJIE1 were associated with virulence or regulatory functions. Additional experiments were conducted using C. jejuni isolates with and without CJIE1 grown on four different media: Mueller Hinton (MH) media containing blood; MH media containing 0.1% sodium deoxycholate, which is thought to result in increased expression of virulence proteins; MH media containing 2.5% Oxgall; and MHwithout additives. These experiments provided further evidence that CJIE1 affected protein expression, including virulence-associated proteins. They also demonstrated a general bile response involving a majority of the proteome and clearly showed the induction of almost all proteins known to be involved with iron acquisition. The data have been deposited to the ProteomeXchange with identifiers PXD000798, PXD000799, PXD000800, and PXD000801. Conclusion The presence of the CJIE1 prophage was associated with differences in protein expression levels under different conditions. Further work is required to determine what genes are involved in causing this phenomenon.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700