Dual-imaging model of SQUID biosusceptometry for locating tumors targeted using magnetic nanoparticles
详细信息    查看全文
  • 作者:Jen-Jie Chieh (1)
    Kai-Wen Huang (2) (3)
    Yi-Yan Lee (1)
    Wen-Chun Wei (1)

    1. Institute of Electro-Optical Science and Technology
    ; National Taiwan Normal University ; Taipei ; 116 ; Taiwan
    2. Department of Surgery and Hepatitis Research Center
    ; National Taiwan University Hospital ; Taipei ; 100 ; Taiwan
    3. Graduate Institute of Clinical Medicine
    ; National Taiwan University ; Taipei ; 100 ; Taiwan
  • 关键词:Magnetic nanoparticle ; Tumor ; Dual imaging ; Scanning superconducting ; quantum ; interference device
  • 刊名:Journal of Nanobiotechnology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:13
  • 期:1
  • 全文大小:2,516 KB
  • 参考文献:1. Ibraheem AA, Buck AK, Benz MR, Rudert M, Beer AJ, Mansour A, et al. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography for the detection of recurrent bone and soft tissue sarcoma. Cancer. 2013;119:1227鈥?4. CrossRef
    2. Yi CA, Lee KS, Lee HY, Kim S, Kwon OJ, Kim H, et al. Coregistered whole body magnetic resonance imaging-positron emission tomography (MRI-PET) versus PET-computed tomography plus brain MRI in staging resectable lung cancer. Cancer. 2013;119:1784鈥?1. CrossRef
    3. Markides H, Rotherham M, Haj AJE. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater. 2012;2012:614094.
    4. Maringhini A, Cottone M, Sciarrino E, Marceno MP, Seta F, Rinaldi F, et al. Ultrasonographic and radionuclide detection of hepatocellular carcinoma in cirrhotics with low alpha-fetoprotein levels. Cancer. 1984;54:2924鈥?. CrossRef
    5. Ni X, Yang J, Li M. Imaging-guided curative surgical resection of pancreatic cancer in a xenograft mouse model. Cancer Lett. 2012;324:179鈥?5. CrossRef
    6. Buckle T, Chin PT, Leeuwen FW. (Non-targeted) radioactive/fluorescent nanoparticles and their potential in combined pre-and intraoperative imaging during sentinel lymph node resection. Nanotechnology. 2010;21:482001.
    7. Jarzyna PA, Gianella A, Skajaa T, Knudsen G, Deddens LH, Cormode DP, et al. Multifunctional imaging nanoprobes. Wiley Interdisciplinary Rev Nanomed Nanobiotechnol. 2010;2:138鈥?0. CrossRef
    8. Riegler J, Liewc A, Hynes SO, Ortega D, Brien TO, Day RM, et al. Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury. Biomaterials. 2013;34:1987鈥?4. CrossRef
    9. U. S. Food and Drug Administration: Gadolinium-containing Contrast Agents for Magnetic Resonance Imaging (MRI): Omniscan, OptiMARK, Magnevist, ProHance, and MultiHance. Publ Health Advisory. 2006.
    10. Riley K. New warnings required on use of gadolinium-based contrast agents- Enhanced screening recommended to detect kidney dysfunction. FDA News Release. 2010.
    11. Song G, Xiangyang S, James RBJ, Mark BH, Bradford GO. Development of a remanence measurement-based SQUID system with in-depth resolution for nanoparticle imaging. Phys Med Biol. 2009;54:N177鈥?8. CrossRef
    12. Tsukamoto A, Saitoh K, Suzuki D, Kandori A, Tsukada K, Sugiura Y, et al. Development of Multisample biological immunoassay system using HTS SQUID and magnetic nanoparticles. IEEE Transactions Appl Superconductivity. 2005;15:656鈥?. CrossRef
    13. Frank W, Uwe S, Dietmar E, Lutz T. Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles. Pharm Res. 2012;29:1189鈥?02. CrossRef
    14. Adolphi NL, Butler KS, Lovato DM, Tessier TE, Trujillo JE, Hathaway HJ, et al. Imaging of Her2-targeted magnetic nanoparticles for breast cancer detection: comparison of SQUID-detected magnetic relaxometry and MRI. Contrast Media Mol Imaging. 2012;7:308鈥?9. CrossRef
    15. Chemla YR, Grossman HL, Poon Y, McDermott R, Stevens R, Alper MD, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay. PNAS. 2000;97:14268鈥?2. CrossRef
    16. Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol. 2009;54:L1鈥揕10. CrossRef
    17. Chieh JJ, Tseng WK, Horng HE, Wu CC, Hong CY. In-vivo and real-time measurement of magnetic-nanoparticles distribution in animals by scanning SQUID Biosusceptometry for biomedicine study. IEEE Trans Biomed Eng. 2011;58:2719鈥?4. CrossRef
    18. Tseng WK, Chieh JJ, Yang YF, Chiang CK, Chen YL, Yang SY, et al. A noninvasive method to determine the fate of Fe3O4 nanoparticles following intravenous injection using scanning SQUID biosusceptometry. PLoS One. 2012;7:e48510. CrossRef
    19. Huang KW, Chieh JJ, Horng HE, Hong CY, Yang HC. Characteristics of magnetic labeling on liver tumors with anti-alpha-fetoprotein-mediated Fe3O4 magnetic nanoparticles. Int J Nanomedicine. 2012;7:2987鈥?6.
    20. Huang KW, Yang SY, Hong YW, Chieh JJ, Yang CC, Horng HE, et al. Feasibility studies for assaying alpha-fetoprotein using antibody- activated magnetic nanoparticles. Int J Nanomedicine. 2012;7(1991):1996.
    21. Hong CY, Chen WH, Chien CF, Yang SY, Horng HE, Yang LC, et al. Wash-free immunomagnetic detection for serum through magnetic susceptibility reduction. Appl Phys Lett. 2007;90:74105. CrossRef
    22. Tseng WK, Chieh JJ, Horng HE, Wu CC, Hong CY. In-vivo and fast examination of iron concentration of magnetic nano-particles in an animal torso via scanning SQUID Biosusceptometry. IEEE Trans Appl Supercond. 2011;21:2250. CrossRef
    23. Chieh JJ, Huang KW, Lee YD, Horng HE, Yang HC. In vivo screening of Hepatocellular Carcinoma Using the AC Susceptibility of Antialphafetoprotein-Activated Magnetic Nanoparticles. PLoS One. 2012;7:e46756. CrossRef
    24. Yang JW, Yang HC, Yang SY, Horng HE, Hung JC, Chen YC, et al. Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Mater. 2004;283:210鈥?. CrossRef
    25. Chieh JJ, Horng HE, Tseng WK, Yang SY, Hong CY, Yang HC, et al. Imaging the distribution of magnetic nanoparticles on animal bodies using scanning SQUID biosusceptometry attached with a video camera. IEEE Trans Appl Supercond. 2013;23:1601503. CrossRef
    26. Atkinson WJ, Brezovich IA, Chakraborty DP. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng. 1984;BME-31:70鈥?175. CrossRef
    27. Kondo T, Itozaki H. Normal conducting transfer coil for SQUID NDE. Supercond Sci Technol. 2004;17:459鈥?2. CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Nanotechnology
  • 出版者:BioMed Central
  • ISSN:1477-3155
文摘
Background For intraoperative imaging in operating theaters or preoperative imaging in clinics, compact and economic integration rather than large and expensive equipment is required to coregister structural and functional imaging. However, current technologies, such as those integrating optical and gamma cameras or infrared and fluorescence imaging, involve certain drawbacks, including the radioactive biorisks of nuclear medicine indicators and the inconvenience of conducting measurements in dark environments. Methods To specifically and magnetically label liver tumors, an anti-alpha-fetoprotein (AFP) reagent was synthesized from biosafe iron oxide magnetic nanoparticles (MNPs) coated with anti-AFP antibody and solved in a phosphate buffered saline solution. In addition, a novel dual-imaging model system integrating an optical camera and magnetic scanning superconducting-quantum-interference device (SQUID) biosusceptometry (SSB) was proposed. The simultaneous coregistration of low-field magnetic images of MNP distributions and optical images of anatomical regions enabled the tumor distribution to be determined easily and in real time. To simulate targeted MNPs within animals, fewer reagents than the injected dose were contained in a microtube as a sample for the phantom test. The phantom test was conducted to examine the system characteristics and the analysis method of dual images. Furthermore, the animal tests were classified into two types, with liver tumors implanted either on the backs or livers of rats. The tumors on the backs were to visually confirm the imaging results of the phantom test, and the tumors on the livers were to simulate real cases in hepatocellular carcinoma people. Results A phantom test was conducted using the proposed analysis method; favorable contour agreement was shown between the MNP distribution in optical and magnetic images. Consequently, the positioning and discrimination of liver tumors implanted on the backs and livers of rats were verified by conducting in vivo and ex vivo tests. The results of tissue staining verified the feasibility of using this method to determine the distribution of liver tumors. Conclusion The results of this study indicate the clinical potential of using anti-AFP-mediated MNPs and the dual-imaging model SSB for discriminating and locating tumors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700