Adaptive backstepping control of wheeled inverted pendulums models
详细信息    查看全文
  • 作者:Rongxin Cui (1)
    Ji Guo (2)
    Zhaoyong Mao (1)

    1. School of Marine Science and Technology
    ; Northwestern Polytechnical University ; Xi鈥檃n ; 710072 ; People鈥檚 Republic of China
    2. College of Physics and Electrical Engineering
    ; Anyang Normal University ; Anyang ; 455000 ; People鈥檚 Republic of China
  • 关键词:Backstepping ; Adaptive control ; Wheeled inverted pendulum ; Path ; following
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:79
  • 期:1
  • 页码:501-511
  • 全文大小:316 KB
  • 参考文献:1. Chiu, C.-H.: The design and implementation of a wheeled inverted pendulum using an adaptive output recurrent cerebellar model articulation controller. IEEE Trans. Industr. Electron. 57(5), 1814鈥?822 (2010) CrossRef
    2. Li, Z., Kang, Y.: Dynamic coupling switching control incorporating support vector machines for wheeled mobile manipulators with hybrid joints. Automatica 46(5), 832鈥?42 (2010) CrossRef
    3. Kim, Y., Kim, S.H., Kwak, Y.K.: Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot. J. Intell. Robot. Syst. 44(1), 25鈥?6 (2005) CrossRef
    4. Grasser, F., D鈥橝rrigo, A., Colombi, S., Rufer, A.C.: Joe: a mobile, inverted pendulum. IEEE Trans. Ind. Electron. 49(1), 107鈥?14 (2002) CrossRef
    5. Pathak, K., Franch, J., Agrawal, S.K.: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Robot. 21(3), 505鈥?13 (2005) CrossRef
    6. Huang, J., Wang, H., Matsuno, T., Fukuda, T., Sekiyama, K.: Robust velocity sliding mode control of mobile wheeled inverted pendulum systems. In: Proceedings of 2009 IEEE International Conference on Robotics and Automation, ICRA鈥?9, pp. 2983鈥?988. IEEE (2009)
    7. Li, Z., Yang, C.: Neural-adaptive output feedback control of a class of transportation vehicles based on wheeled inverted pendulum models. IEEE Trans. Control Syst. Technol. 20(6), 1583鈥?591 (2012) CrossRef
    8. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589鈥?00 (1998) CrossRef
    9. Huang, J., Guan, Z.-H., Matsuno, T., Fukuda, T., Sekiyama, K.: Sliding-mode velocity control of mobile-wheeled inverted-pendulum systems. IEEE Trans. Robot. 26(4), 750鈥?58 (2010) CrossRef
    10. Li, Z., Yang, C., Fan, L.: Advanced Control of Wheeled Inverted Pendulum Systems. Springer Publishing Company, Incorporated, Berlin (2013)
    11. Huang, C.-H., Wang, W.-J., Chiu, C.-H.: Design and implementation of fuzzy control on a two-wheel inverted pendulum. IEEE Trans. Ind. Electron. 58(7), 2988鈥?001 (2011) CrossRef
    12. Liu, Y.-J., Chen, C.L.P., Wen, G.-X., Tong, S.-C.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22(7), 1162鈥?167 (2011) CrossRef
    13. Takei, T., Imamura, R., Yuta, S.: Baggage transportation and navigation by a wheeled inverted pendulum mobile robot. IEEE Trans. Ind. Electron. 56(10), 3985鈥?994 (2009) CrossRef
    14. Yang, C.: Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Trans. Cybern. 43(1), 24鈥?6 (2013) CrossRef
    15. Li, Z., Xia, Y., Sun, F.: Adaptive fuzzy control for multilateral cooperative teleoperation of multiple robotic manipulators under random network-induced delays. IEEE Trans. Fuzzy Syst. 22(2), 437鈥?50 (2014)
    16. Li, Z.: Adaptive fuzzy output feedback motion/force control for wheeled inverted pendulums. IET Control Theory Appl. 5(10), 1176鈥?188 (2011) CrossRef
    17. Reyhanoglu, M., van der Schaft, A., McClamroch, N.H., Kolmanovsky, I.: Dynamics and control of a class of underactuated mechanical systems. IEEE Trans. Autom. Control 44(9), 1663鈥?671 (1999) CrossRef
    18. Sampei, M., Tamura, T., Kobayashi, T., Shibui, N.: Arbitrary path tracking control of articulated vehicles using nonlinear control theory. IEEE Trans. Control Syst. Technol. 3(1), 125鈥?31 (1995) CrossRef
    19. Acosta, J.A., Ortega, R., Astolfi, A., Mahindrakar, A.D.: Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Trans. Autom. Control 50(12), 1936鈥?955 (2005) CrossRef
    20. Grizzle, J.W., Moog, C.H., Chevallereau, C.: Nonlinear control of mechanical systems with an unactuated cyclic variable. IEEE Trans. Autom. Control 50(5), 559鈥?76 (2005) CrossRef
    21. Lin, W., Pongvuthithum, R., Qian, C.: Control of high-order nonholonomic systems in power chained form using discontinuous feedback. IEEE Trans. Autom. Control 47(1), 108鈥?15 (2002) CrossRef
    22. Nakamura, Y., Mukherjee, R.: Nonholonomic path planning of space robots via a bidirectional approach. IEEE Trans. Robot. Autom. 7(4), 500鈥?14 (1991) CrossRef
    23. Papadopoulos, E.: Path planning for space manipulators exhibiting nonholonomic behavior. In: Proceedings of the International Conference on Intelligent Robots and Systems, pp. 7鈥?0 (1992)
    24. Guenard, N., Hamel, T., Mahony, R.: A practical visual servo control for an unmanned aerial vehicle. IEEE Trans. Robot. 24(2), 331鈥?40 (2008) CrossRef
    25. Liljeback, P., Haugstuen, I.U., Pettersen, K.Y.: Path following control of planar snake robots using a cascaded approach. IEEE Trans. Control Syst. Technol. 20(1), 111鈥?26 (2012)
    26. Chen, M., Ge, S.S.: Direct adaptive neural control for a class of uncertain non-affine nonlinear systems based on disturbance observer. IEEE Trans. Cybern. 43(4), 1213鈥?225 (2013)
    27. Yang, C., Ganesh, G., Haddadin, S., Parusel, S., Albu-Schaeffer, A., Burdet, E.: Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans. Robot. 27(5), 918鈥?30 (2011) CrossRef
    28. Crespi, A., Lachat, D., Pasquier, A., Ijspeert, A.J.: Controlling swimming and crawling in a fish robot using a central pattern generator. Auton. Robots 25(1鈥?), 3鈥?3 (2008) CrossRef
    29. Zhang, M., Tarn, T.-J.: Hybrid control of the pendubot. IEEE/ASME Trans. Mechatron. 7(1), 79鈥?6 (2002) CrossRef
    30. Salerno, A., Angeles, J.: The control of semi-autonomous two-wheeled robots undergoing large payload-variations. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2004. ICRA鈥?4. 2004, vol. 2, pp. 1740鈥?745. IEEE (2004)
    31. Blankespoor, A., Roemer, R.: Experimental verification of the dynamic model for a quarter size self-balancing wheelchair. In: Proceedings of the 2004 American Control Conference, 2004, vol. 1, pp. 488鈥?92. IEEE (2004)
    32. Liu, Y.-J., Tong, S.-C., Chen, C.L.P.: Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 21(2), 275鈥?88 (2013) CrossRef
    33. Chen, M., Ge, S.S., Voon Ee How, B.: Robust adaptive neural network control for a class of uncertain mimo nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796鈥?12 (2010) CrossRef
    34. Liu, Y.-J., Li, Y.-X.: Adaptive fuzzy output-feedback control of uncertain siso nonlinear systems. Nonlinear Dyn. 61(4), 749鈥?61 (2010) CrossRef
    35. Li, Z., Yang, C., Su, C.-Y., Ye, W.: Adaptive fuzzy-based motion generation and control of mobile under-actuated manipulators. Eng. Appl. Artif. Intell. 30, 86鈥?5 (2014)
    36. Yang, C., Ma, H., Fu, M.: Adaptive predictive control of periodic non-linear auto-regressive moving average systems using nearest-neighbour compensation. IET Control Theory Appl. 7(7), 936鈥?51 (2013)
    37. Chen, M., Wu, Q., Jiang, C.: Disturbance-observer-based robust synchronization control of uncertain chaotic systems. Nonlinear Dyn. 70(4), 2421鈥?432 (2012) CrossRef
    38. Li, Z., Zhang, Y.: Robust adaptive motion/force control for wheeled inverted pendulums. Automatica 46(8), 1346鈥?353 (2010) CrossRef
    39. Yang, C., Li, Z., Cui, R., Xu, B.: Neural network-based motion control of an underactuated wheeled inverted pendulum model. IEEE Trans. Neural Netw. Learn. Syst. (2014). doi:10.1109/TNNLS.2014.2302475
    40. Chiu, C.-H., Lin, Y.-W., Lin, C.-H.: Real-time control of a wheeled inverted pendulum based on an intelligent model free controller. Mechatronics 21(3), 523鈥?33 (2011) CrossRef
    41. Chiu, C.-H.: Self-tuning output recurrent cerebellar model articulation controller for a wheeled inverted pendulum control. Neural Comput. Appl. 19(8), 1153鈥?164 (2010) CrossRef
    42. Li, Z., Zhang, Y., Yang, Y.: Support vector machine optimal control for mobile wheeled inverted pendulums with unmodelled dynamics. Neurocomputing 73(13), 2773鈥?782 (2010) CrossRef
    43. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V., et al.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
In this paper, the state feedback control of wheeled inverted pendulum (WIP) used for mobile transportation has been investigated. The dynamic unstable balance and nonholonomic constraints inherent degrade the performance when the WIP operates in path-following mode. Through a suitable coordinates transformation, the WIP model is formulated into a parametric strict feedback form. Then, backstepping-based adaptive control is designed to achieve output tracking for the WIP. Simulation results are provided to show the effectiveness of the control proposed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700