A novel sleep scheduling scheme in green wireless sensor networks
详细信息    查看全文
  • 作者:Jing Zhang (1) (2)
    Li Xu (1) (3)
    Shuming Zhou (1)
    Xiucai Ye (4)

    1. School of Mathematics and Computer Science
    ; Fujian Normal University ; Fuzhou ; China
    2. School of Information Science and Engineering
    ; Fujian University of Technology ; Fuzhou ; China
    3. Fujian Provincial Key Laboratory of Network Security and Cryptology
    ; Fujian Normal University ; Fuzhou ; China
    4. Department of Computer Science
    ; University of Tsukuba ; Tsukuba Science City ; Ibaraki ; Japan
  • 关键词:Wireless sensor networks ; Sleep scheduling ; Dec ; POMDP ; Quasi ; Monte Carlo ; Upper bound
  • 刊名:The Journal of Supercomputing
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:71
  • 期:3
  • 页码:1067-1094
  • 全文大小:1,715 KB
  • 参考文献:1. Wei, Q, Jianfeng, G, Changqiao, X, Hongke, Z (2012) G-MER: green mobility estimation-based routing protocol in wireless sensor network. China Commun 9: pp. 10-21
    2. Morreale, P, Qi, F, Croft, P (2011) A green wireless sensor network for environmental monitoring and risk identification. Int J Sens Netw 10: pp. 73-82 CrossRef
    3. Bianzino, AP, Chaudet, C, Rossi, D, Rougier, JL (2012) A survey of green networking research. IEEE Commun Surv Tutor 14: pp. 3-20 CrossRef
    4. Chen, Y, Zhang, S, Xu, S, Li, GY (2011) Fundamental trade-offs on green wireless networks. IEEE Commun Mag 49: pp. 30-37 CrossRef
    5. Jabbar S, Minhas AA, Paul A, Rho S (2014) Multilayer cluster designing algorithm for lifetime improvement of wireless sensor networks. J Supercomput 70(1):104鈥?32
    6. Kim, YH, Han, YH, Jeong, YS, Park, DS (2013) Lifetime maximization considering target coverage and connectivity in directional image/video sensor networks. J Supercomput 65: pp. 365-382 CrossRef
    7. Wang, WN, Mi, ZK, Wang, B (2012) Green networking based energy efficient communications. China Commun 9: pp. 22-30
    8. Zeng, Y, Sreenan, CJ, Xiong, N, Yang, LT, Park, JH (2010) Connectivity and coverage maintenance in wireless sensor networks. J Supercomput 52: pp. 23-46 CrossRef
    9. Zhao, Y, Wu, J, Li, F, Lu, S (2012) On maximizing the lifetime of wireless sensor networks using virtual backbone scheduling. IEEE Trans Parallel Distrib Syst 23: pp. 1528-1535 CrossRef
    10. Nan, G, Shi, G, Mao, Z, Li, M (2012) CDSWS: coverage-guaranteed distributed sleep/wake scheduling for wireless sensor networks. EURASIP J Wirel Commun Netw 1: pp. 1-14 CrossRef
    11. Liu, C, Wu, K, Xiao, Y, Sun, B (2006) Random coverage with guaranteed connectivity: joint scheduling for wireless sensor networks. IEEE Trans Parallel Distrib Syst 17: pp. 562-575 CrossRef
    12. Wang, L, Wei, RZ, Tian, ZH (2012) Cluster based node scheduling method for wireless sensor networks. Sci China Inf Sci 55: pp. 755-764 CrossRef
    13. Ding, Y, Wang, C, Xiao, L (2009) An adaptive partitioning scheme for sleep scheduling and topology control in wireless sensor networks. IEEE Trans Parallel Distrib Syst 20: pp. 1352-1365 CrossRef
    14. Yu, J, Zhang, Q, Yu, D, Chen, C, Wang, G (2014) Domatic partition in homogeneous wireless sensor networks. J Netw Comput Appl 37: pp. 186-193 CrossRef
    15. Censor-Hillel, K, Ghaffari, M, Kuhn, F (2014) A new perspective on vertex connectivity. Proc SODA 2014: pp. 546-561
    16. Zhang, DQ, Li, D (2014) High-density randomly deployed nodes sleep scheduling algorithm in wireless sensor networks. Adv Mater Res 846: pp. 446-451
    17. Fuemmeler JA, Veeravalli VV (2008) Smart sleeping policies for energy-efficient tracking in sensor networks. In: Networked sensing information and control. Springer, USA, pp 267鈥?87
    18. Fuemmeler, JA, Veeravalli, VV (2010) Energy efficient multi-object tracking in sensor networks. IEEE Trans Signal Process 58: pp. 3742-3750 CrossRef
    19. Fuemmeler, JA, Atia, GK, Veeravalli, VV (2011) Sleep control for tracking in sensor networks. IEEE Trans Signal Process 59: pp. 4354-4366 CrossRef
    20. Atia, GK, Veeravalli, VV, Fuemmeler, JA (2011) Sensor scheduling for energy-efficient target tracking in sensor networks. IEEE Trans Signal Process 59: pp. 4923-4937 CrossRef
    21. Jiang, B, Ravindran, B, Cho, H (2013) Probability-based prediction and sleep scheduling for energy-efficient target tracking in sensor networks. IEEE Trans Mob Comput 12: pp. 735-747 CrossRef
    22. Mihaylov M, Le Borgne YA, Tuyls K, Now A (2013) Reinforcement learning for self-organizing wake-up scheduling in wireless sensor networks. In: Agents and artificial intelligence. Springer, Berlin, pp 382鈥?96
    23. Wu, F, Zilberstein, S, Chen, X (2011) Online planning for multi-agent systems with bounded communication. Artif Intell 175: pp. 487-511 CrossRef
    24. Bhandarkar, SM, Arabnia, HR (1995) The REFINE multiprocessor: theoretical properties and algorithms. Parallel Comput 21: pp. 1783-1806 CrossRef
    25. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th annual international high performance computing conference. The 1993 High Performance Computing: New Horizons Supercomputing Symposium, Calgary, Alberta, Canada, June 349鈥?57
    26. Arabnia, HR, Oliver, MA (1989) A transputer network for fast operations on digitised images. Int J Eurogr Assoc (Comput Graphics Forum) 8: pp. 3-12 CrossRef
    27. Arabnia, HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10: pp. 188-193 CrossRef
    28. Shi, Z, Beard, C, Mitchell, K (2009) Analytical models for understanding misbehavior and MAC friendliness in CSMA networks. Perform Eval 66: pp. 469-487 CrossRef
    29. Shi, Z, Beard, C, Mitchell, K (2013) Analytical models for understanding space, backoff, and flow correlation in CSMA wireless networks. Wirel Netw 19: pp. 393-409 CrossRef
    30. Shi Z, Beard C, Mitchell K (2011) Competition, cooperation, and optimization in multi-hop CSMA networks. In: Proceedings of the 8th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks. ACM, pp 117鈥?20
    31. Shi Z, Beard CC, Mitchell K (2007) Misbehavior and MAC friendliness in CSMA networks. In: Proceedings of WCNC, pp 355鈥?60
    32. Shi Z, Beard C, Mitchell K (2008) Tunable traffic control for multihop CSMA networks. In: Proceedings of military communications conference, 2008, MILCOM 2008. IEEE, pp 1鈥?
    33. Shi Z, Gu R (2013) Efficient implementation of particle Swarm optimization algorithm. Int J Soft Comput Math Control 2(4):1鈥?3
    34. Ragi, S, Chong, EKP (2013) Decentralized control of unmanned aerial vehicles for multitarget tracking. Int Conf IEEE Unmanned Aircr Syst 2013: pp. 260-268
    35. Demchik, V (2011) Pseudo-random number generators for Monte Carlo simulations on ATI graphics processing units. Comput Phys Commun 182: pp. 692-705 CrossRef
    36. Halton, JH (1960) On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik 2: pp. 84-90 CrossRef
    37. Gmez-Prez, D, Hofer, R, Niederreiter, H (2013) A general discrepancy bound for hybrid sequences involving Halton sequences. Unif Distrib Theory 8: pp. 31-45
    38. Levy BC (2008) Principles of signal detection and parameter estimation. Springer, New York, USA
    39. Hoeffding, W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58: pp. 13-30 CrossRef
  • 刊物类别:Computer Science
  • 刊物主题:Programming Languages, Compilers and Interpreters
    Processor Architectures
    Computer Science, general
  • 出版者:Springer Netherlands
  • ISSN:1573-0484
文摘
Reduction of unnecessary energy consumption is becoming a major concern in green wireless sensor networks. Sleep scheduling is one of the efficient strategies to achieve energy saving. In this paper, we propose a novel scheme for the sleep scheduling, which is based on Decentralized Partially Observable Markov Decision Process (Dec-POMDP). A sleep scheduling algorithm with online planning (Dec-POP-SSA) with respect to Dec-POMDP is also presented. In Dec-POMDP, due to the hardness of obtaining the state spaces and the reward with mold-free environment, quasi-Monte Carlo is applied to collect state spaces such that the real-time acquisition of beliefs state is achieved, and the reward is evaluated in tracking reward and coverage connectivity intensity. Instead of producing the entire plan, Dec-POP-SSA need only find actions for the current step. We also give the theoretical analysis on the upper bound for Dec-POP-SSA. The numerical experiments show that Dec-POP-SSA may receive the highest reward.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700