Virus genome dynamics under different propagation pressures: reconstruction of whole genome haplotypes of west nile viruses from NGS data
详细信息    查看全文
  • 作者:Cornell Kortenhoeven (1) (2) (3)
    Fourie Joubert (4)
    Armanda DS Bastos (2)
    Celia Abolnik (1) (3)

    1. Poultry Section
    ; Department of Production Animal Studies ; Faculty of Veterinary Science ; University of Pretoria ; Old Soutpan Road ; Onderstepoort ; 0110 ; South Africa
    2. Department of Zoology and Entomology
    ; Faculty of Natural and Agricultural Sciences ; Mammal Research Institute ; University of Pretoria ; Lynwood Road ; Pretoria ; South Africa
    3. ARC-Ondestepoort Veterinary Institute
    ; 100 Old Soutpan Road ; Onderstepoort ; 0110 ; South Africa
    4. Department of Biochemistry
    ; Faculty of Natural and Agricultural Sciences ; University of Pretoria ; Lynwood Road ; Pretoria ; South Africa
  • 关键词:West Nile virus ; Quasispecies Reconstruction ; Mutation ; Selection Equilibrium ; Cell Tropism
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:2,424 KB
  • 参考文献:1. Campbell, GL, Marfin, AA, Lanciotti, RS, Gubler, DJ (2002) West nile virus. Lancet Infect Dis 2: pp. 519-29 CrossRef
    2. Wertheimer, AM (2012) West nile virus: an update on recent developments. Clin Microbiol Newsl 34: pp. 67-71 CrossRef
    3. Rossi, SL, Ross, TM, Evans, JD (2010) West nile virus. Clin Lab Med 30: pp. 47-65 CrossRef
    4. Mackenzie, J, Williams, D (2009) The zoonotic flaviviruses of Southern, South鈥怑astern and Eastern Asia, and australasia: the potential for emergent viruses. Zoonoses Publ Health 56: pp. 338-56 CrossRef
    5. V谩zquez, A, S谩nchez-Seco, MP, Ruiz, S, Molero, F, Hern谩ndez, L, Moreno, J (2010) Putative new lineage of West Nile virus, Spain. Emerg Infect Dis 16: pp. 549 CrossRef
    6. Savini, G, Capelli, G, Monaco, F, Polci, A, Russo, F, Gennaro, A (2012) Evidence of West Nile virus lineage 2 circulation in Northern Italy. Vet Microbiol 158: pp. 267-73 CrossRef
    7. Bakonyi, T, Ivanics, 脡, Erd茅lyi, K, Ursu, K, Ferenczi, E, Weissenb枚ck, H (2006) Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerg Infect Dis 12: pp. 618 CrossRef
    8. Wodak, E, Richter, S, Bag贸, Z, Revilla-Fern谩ndez, S, Weissenb枚ck, H, Nowotny, N (2011) Detection and molecular analysis of West Nile virus infections in birds of prey in the eastern part of Austria in 2008 and 2009. Vet Microbiol 149: pp. 358-66 CrossRef
    9. Papa, A, Bakonyi, T, Xanthopoulou, K, V谩zquez, A, Tenorio, A, Nowotny, N (2011) Genetic characterization of West Nile virus lineage 2, Greece, 2010. Emerg Infect Dis 17: pp. 920-2 CrossRef
    10. Papa, A, Xanthopoulou, K, Gewehr, S, Mourelatos, S (2011) Detection of West Nile virus lineage 2 in mosquitoes during a human outbreak in Greece. Clin Microbiol Infect 17: pp. 1176-80 CrossRef
    11. Bagnarelli, P, Marinelli, K, Trotta, D, Monachetti, A, Tavio, M, Gobbo, R (2011) Human case of autochthonous West Nile virus lineage 2 infection in Italy, September 2011. Euro Surveill 16: pp. 20002
    12. Taucher, C, Berger, A, Mandl, CW (2010) A trans-complementing recombination trap demonstrates a low propensity of flaviviruses for intermolecular recombination. J Virol 84: pp. 599-611 CrossRef
    13. Holland, J, Spindler, K, Horodyski, F, Grabau, E, Nichol, S, VandePol, S (1982) Rapid evolution of RNA genomes. Science 215: pp. 1577-85 CrossRef
    14. Domingo, E, Holland, J (1997) RNA virus mutations and fitness for survival. Annual Rev Microbiol 51: pp. 151-78 CrossRef
    15. Domingo, E, Sheldon, J, Perales, C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76: pp. 159-216 CrossRef
    16. Domingo, E, Escarm铆s, C, Sevilla, N, Baranowski, E (1998) Population dynamics in the evolution of RNA viruses. Adv Exp Med Biol. 440: pp. 721-7 CrossRef
    17. Domingo, E (2002) Quasispecies theory in virology. J Virol 76: pp. 463-5 CrossRef
    18. McElroy, K, Thomas, T, Luciani, F (2014) Deep sequencing of evolving pathogen populations: applications, errors, and bioinformatic solutions. Microbial Informatics Experimentation 4: pp. 1 CrossRef
    19. Nybakken, GE, Nelson, CA, Chen, BR, Diamond, MS, Fremont, DH (2006) Crystal structure of the West Nile virus envelope glycoprotein. J Virol 80: pp. 11467-74 CrossRef
    20. Brinton, MA, Dispoto, JH (1988) Sequence and secondary structure analysis of the 5鈥?terminal region of flavivirus genome RNA. Virology 162: pp. 290-9 CrossRef
    21. Falgout, B, Markoff, L (1995) Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. J Virol 69: pp. 7232-43
    22. Khromykh, AA, Varnavski, AN, Sedlak, PL, Westaway, EG (2001) Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J Virol 75: pp. 4633-40 CrossRef
    23. Altshuler, D, Pollara, VJ, Cowles, CR, Etten, WJ, Baldwin, J, Linton, L (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407: pp. 513-6 CrossRef
    24. Ahlquist, P, Noueiry, AO, Lee, W-M, Kushner, DB, Dye, BT (2003) Host factors in positive-strand RNA virus genome replication. J Virol 77: pp. 8181-6 CrossRef
    25. CLC Genomic Workbench http://www.clcbio.com.
    26. Burrows M, Wheeler DJ. A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation. 1994; accessible at http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
    27. Langmead, B, Trapnell, C, Pop, M, Salzberg, SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: pp. R25 CrossRef
    28. Li, H, Handsaker, B, Wysoker, A, Fennell, T, Ruan, J, Homer, N (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25: pp. 2078-9 CrossRef
    29. Zagordi, O, Klein, R, D盲umer, M, Beerenwinkel, N (2010) Error correction of next-generation sequencing data and reliable estimation of HIV quasispecies. Nucleic Acids Res 38: pp. 7400-9 CrossRef
    30. Beerenwinkel, N, Zagordi, O (2011) Ultra-deep sequencing for the analysis of viral populations. Current Opinion Virol 1: pp. 413-8 CrossRef
    31. Eriksson, N, Pachter, L, Mitsuya, Y, Rhee, S-Y, Wang, C, Gharizadeh, B (2008) Viral population estimation using pyrosequencing. PLoS Comput Biol 4: pp. e1000074 CrossRef
    32. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-9 CrossRef
    33. Librado, P, Rozas, J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: pp. 1451-2 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Extensive focus is placed on the comparative analyses of consensus genotypes in the study of West Nile virus (WNV) emergence. Few studies account for genetic change in the underlying WNV quasispecies population variants. These variants are not discernable in the consensus genome at the time of emergence, and the maintenance of mutation-selection equilibria of population variants is greatly underestimated. The emergence of lineage 1 WNV strains has been studied extensively, but recent epidemics caused by lineage 2 WNV strains in Hungary, Austria, Greece and Italy emphasizes the increasing importance of this lineage to public health. In this study we explored the quasispecies dynamics of minority variants that contribute to cell-tropism and host determination, i.e. the ability to infect different cell types or cells from different species from Next Generation Sequencing (NGS) data of a historic lineage 2 WNV strain. Results Minority variants contributing to host cell membrane association persist in the viral population without contributing to the genetic change in the consensus genome. Minority variants are shown to maintain a stable mutation-selection equilibrium under positive selection, particularly in the capsid gene region. Conclusions This study is the first to infer positive selection and the persistence of WNV haplotype variants that contribute to viral fitness without accompanying genetic change in the consensus genotype, documented solely from NGS sequence data. The approach used in this study streamlines the experimental design seeking viral minority variants accurately from NGS data whilst minimizing the influence of associated sequence error.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700