Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma
详细信息    查看全文
  • 作者:Phil F Cheng (1)
    Olga Shakhova (3)
    Daniel S Widmer (1)
    Ossia M Eichhoff (1)
    Daniel Zingg (3)
    Sandra C Frommel (4)
    Benedetta Belloni (1)
    Marieke IG Raaijmakers (1)
    Simone M Goldinger (1)
    Raffaella Santoro (4)
    Silvio Hemmi (2)
    Lukas Sommer (3)
    Reinhard Dummer (1)
    Mitchell P Levesque (1)

    1. Department of Dermatology
    ; Faculty of Medicine ; University Hospital Z眉rich ; and University of Z眉rich ; Wagistrasse 14 ; CH-8952 ; Z眉rich ; Switzerland
    3. Cell and Developmental Biology
    ; Institute of Anatomy ; University of Z眉rich ; Z眉rich ; Switzerland
    4. Institute of Veterinary Biochemistry and Molecular Biology
    ; University of Z眉rich ; Z眉rich ; Switzerland
    2. Faculty of Mathematics and Natural Sciences
    ; Institute of Molecular Life Sciences ; University of Z眉rich ; Z眉rich ; Switzerland
  • 刊名:Genome Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:2,246 KB
  • 参考文献:1. Dupin, E, Douarin, NM (2003) Development of melanocyte precursors from the vertebrate neural crest. Oncogene 22: pp. 3016-23 CrossRef
    2. Garbe, C, Leiter, U (2009) Melanoma epidemiology and trends. Clin Dermatol 27: pp. 3-9 CrossRef
    3. MacKie, RM, Hauschild, A, Eggermont, AM (2009) Epidemiology of invasive cutaneous melanoma. Ann Oncol 20: pp. vi1-7 CrossRef
    4. Quintana, E, Shackleton, M, Foster, HR, Fullen, DR, Sabel, MS, Johnson, TM (2010) Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18: pp. 510-23 CrossRef
    5. Perego, M, Tortoreto, M, Tragni, G, Mariani, L, Deho, P, Carbone, A (2010) Heterogeneous phenotype of human melanoma cells with in vitro and in vivo features of tumor-initiating cells. J Invest Dermatol 130: pp. 1877-86 CrossRef
    6. Roesch, A, Fukunaga-Kalabis, M, Schmidt, EC, Zabierowski, SE, Brafford, PA, Vultur, A (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141: pp. 583-94 CrossRef
    7. Landsberg, J, Kohlmeyer, J, Renn, M, Bald, T, Rogava, M, Cron, M (2012) Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490: pp. 412-6 CrossRef
    8. Romano, E, Schwartz, GK, Chapman, PB, Wolchock, JD, Carvajal, RD (2011) Treatment implications of the emerging molecular classification system for melanoma. Lancet Oncol 12: pp. 913-22 CrossRef
    9. Hoek, KS, Goding, CR (2010) Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res 23: pp. 746-59 CrossRef
    10. Freedman, JA, Tyler, DS, Nevins, JR, Augustine, CK (2011) Use of gene expression and pathway signatures to characterize the complexity of human melanoma. Am J Pathol 178: pp. 2513-22 CrossRef
    11. Hoek, KS, Schlegel, NC, Brafford, P, Sucker, A, Ugurel, S, Kumar, R (2006) Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 19: pp. 290-302 CrossRef
    12. Hendrix, MJ, Seftor, EA, Seftor, RE, Kasemeier-Kulesa, J, Kulesa, PM, Postovit, LM (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7: pp. 246-55 CrossRef
    13. Widmer, DS, Cheng, PF, Eichhoff, OM, Belloni, BC, Zipser, MC, Schlegel, NC (2012) Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res 25: pp. 343-53 CrossRef
    14. Eichhoff, OM, Zipser, MC, Xu, M, Weeraratna, AT, Mihic, D, Dummer, R (2010) The immunohistochemistry of invasive and proliferative phenotype switching in melanoma: a case report. Melanoma Res 20: pp. 349-55 CrossRef
    15. Widmer, DS, Hoek, KS, Cheng, PF, Eichhoff, OM, Biedermann, T, Raaijmakers, MI (2013) Hypoxia contributes to melanoma heterogeneity by triggering HIF1alpha-dependent phenotype switching. J Invest Dermatol 133: pp. 2436-43 CrossRef
    16. Carreira, S, Goodall, J, Denat, L, Rodriguez, M, Nuciforo, P, Hoek, KS (2006) Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 20: pp. 3426-39 CrossRef
    17. Cheli, Y, Giuliano, S, Botton, T, Rocchi, S, Hofman, V, Hofman, P (2011) Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 30: pp. 2307-18 CrossRef
    18. Goodall, J, Carreira, S, Denat, L, Kobi, D, Davidson, I, Nuciforo, P (2008) Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res 68: pp. 7788-94 CrossRef
    19. Plass, C (2002) Cancer epigenomics. Hum Mol Genet 11: pp. 2479-88 CrossRef
    20. Baylin, SB, Jones, PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11: pp. 726-34 CrossRef
    21. Hansen, KD, Timp, W, Bravo, HC, Sabunciyan, S, Langmead, B, McDonald, OG (2011) Increased methylation variation in epigenetic domains across cancer types. Nat Genet 43: pp. 768-75 CrossRef
    22. Molognoni, F, Cruz, AT, Meliso, FM, Morais, AS, Souza, CF, Xander, P (2011) Epigenetic reprogramming as a key contributor to melanocyte malignant transformation. Epigenetics 6: pp. 450-64 CrossRef
    23. Sigalotti, L, Coral, S, Nardi, G, Spessotto, A, Cortini, E, Cattarossi, I (2002) Promoter methylation controls the expression of MAGE2, 3 and 4 genes in human cutaneous melanoma. J Immunother 25: pp. 16-26 CrossRef
    24. Nguyen, T, Kuo, C, Nicholl, MB, Sim, MS, Turner, RR, Morton, DL (2011) Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics 6: pp. 388-94 CrossRef
    25. Deng, T, Kuang, Y, Wang, L, Li, J, Wang, Z, Fei, J (2009) An essential role for DNA methyltransferase 3a in melanoma tumorigenesis. Biochem Biophys Res Commun 387: pp. 611-6 CrossRef
    26. Schinke, C, Mo, Y, Yu, Y, Amiri, K, Sosman, J, Greally, J (2010) Aberrant DNA methylation in malignant melanoma. Melanoma Res 20: pp. 253-65 CrossRef
    27. Alcazar, O, Achberger, S, Aldrich, W, Hu, Z, Negrotto, S, Saunthararajah, Y (2012) Epigenetic regulation by decitabine of melanoma differentiation in vitro and in vivo. Int J Cancer 131: pp. 18-29 CrossRef
    28. Cheung, M, Briscoe, J (2003) Neural crest development is regulated by the transcription factor Sox9. Development 130: pp. 5681-93 CrossRef
    29. Passeron, T, Valencia, JC, Namiki, T, Vieira, WD, Passeron, H, Miyamura, Y (2009) Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. J Clin Invest 119: pp. 954-63
    30. Hoek, KS, Eichhoff, OM, Schlegel, NC, Dobbeling, U, Kobert, N, Schaerer, L (2008) In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 68: pp. 650-6 CrossRef
    31. Weber, M, Davies, JJ, Wittig, D, Oakeley, EJ, Haase, M, Lam, WL (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37: pp. 853-62 CrossRef
    32. Smyth, GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: pp. Article3
    33. Passeron, T, Valencia, JC, Bertolotto, C, Hoashi, T, Pape, E, Takahashi, K (2007) SOX9 is a key player in ultraviolet B-induced melanocyte differentiation and pigmentation. Proc Natl Acad Sci U S A 104: pp. 13984-9 CrossRef
    34. Cook, AL, Smith, AG, Smit, DJ, Leonard, JH, Sturm, RA (2005) Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. Exp Cell Res 308: pp. 222-35 CrossRef
    35. Eichhoff, OM, Weeraratna, A, Zipser, MC, Denat, L, Widmer, DS, Xu, M (2011) Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res 24: pp. 631-42 CrossRef
    36. Bell, DM, Leung, KK, Wheatley, SC, Ng, LJ, Zhou, S, Ling, KW (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16: pp. 174-8 CrossRef
    37. Shakhova, O, Cheng, P, Mishra, PJ, Zingg, D, Schaefer, SM, Debbache, J (2015) Antagonistic cross-regulation between Sox9 and Sox10 controls an anti-tumorigenic program in Melanoma. PLoS Genet 11: pp. e1004877 CrossRef
    38. Mihic-Probst, D, Ikenberg, K, Tinguely, M, Schraml, P, Behnke, S, Seifert, B (2012) Tumor cell plasticity and angiogenesis in human melanomas. PLoS One 7: pp. e33571 CrossRef
    39. Hendrix, MJ, Seftor, EA, Hess, AR, Seftor, RE (2003) Molecular plasticity of human melanoma cells. Oncogene 22: pp. 3070-5 CrossRef
    40. Zipser, MC, Eichhoff, OM, Widmer, DS, Schlegel, NC, Schoenewolf, NL, Stuart, D (2011) A proliferative melanoma cell phenotype is responsive to RAF/MEK inhibition independent of BRAF mutation status. Pigment Cell Melanoma Res 24: pp. 326-33 CrossRef
    41. Fraga, MF, Herranz, M, Espada, J, Ballestar, E, Paz, MF, Ropero, S (2004) A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res 64: pp. 5527-34 CrossRef
    42. Bonazzi, VF, Nancarrow, DJ, Stark, MS, Moser, RJ, Boyle, GM, Aoude, LG (2011) Cross-platform array screening identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as genes frequently silenced by methylation in melanoma. PLoS One 6: pp. e26121 CrossRef
    43. Koga, Y, Pelizzola, M, Cheng, E, Krauthammer, M, Sznol, M, Ariyan, S (2009) Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Res 19: pp. 1462-70 CrossRef
    44. Muthusamy, V, Duraisamy, S, Bradbury, CM, Hobbs, C, Curley, DP, Nelson, B (2006) Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res 66: pp. 11187-93 CrossRef
    45. Conway, K, Edmiston, SN, Khondker, ZS, Groben, PA, Zhou, X, Chu, H (2011) DNA-methylation profiling distinguishes malignant melanomas from benign nevi. Pigment Cell Melanoma Res 24: pp. 352-60 CrossRef
    46. Lian, CG, Xu, Y, Ceol, C, Wu, F, Larson, A, Dresser, K (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150: pp. 1135-46 CrossRef
    47. Rajasekaran, K, Kumar, P, Schuldt, KM, Peterson, EJ, Vanhaesebroeck, B, Dixit, V (2013) Signaling by Fyn-ADAP via the Carma1-Bcl-10-MAP3K7 signalosome exclusively regulates inflammatory cytokine production in NK cells. Nat Immunol 14: pp. 1127-36 CrossRef
    48. Peres, J, Prince, S (2013) The T-box transcription factor, TBX3, is sufficient to promote melanoma formation and invasion. Mol Cancer 12: pp. 117 CrossRef
    49. Rodriguez, M, Aladowicz, E, Lanfrancone, L, Goding, CR (2008) Tbx3 represses E-cadherin expression and enhances melanoma invasiveness. Cancer Res 68: pp. 7872-81 CrossRef
    50. Raaijmakers MIG, Widmer DS, Maudrich M, Koch T, Langer A, Flace A, et al. A new live cell biobank workflow efficiently recovers heterogeneous melanoma cells from native biopsies. Exp Dermatol. 2015.
    51. Geertsen, RC, Hofbauer, GF, Yue, FY, Manolio, S, Burg, G, Dummer, R (1998) Higher frequency of selective losses of HLA-A and -B allospecificities in metastasis than in primary melanoma lesions. J Invest Dermatol 111: pp. 497-502 CrossRef
    52. Bock, C, Reither, S, Mikeska, T, Paulsen, M, Walter, J, Lengauer, T (2005) BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21: pp. 4067-8 CrossRef
    53. Smyth, GK (2005) Limma: linear models for microarray data. Springer, New York
    54. Santoro, R (2014) Analysis of chromatin composition of repetitive sequences: the ChIP-Chop assay. Methods Mol Biol 1094: pp. 319-28 CrossRef
    55. Kadaja, M, Keyes, BE, Lin, M, Pasolli, HA, Genander, M, Polak, L (2014) SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes Dev 28: pp. 328-41 CrossRef
    56. Mathelier, A, Zhao, X, Zhang, AW, Parcy, F, Worsley-Hunt, R, Arenillas, DJ (2014) JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 42: pp. D142-7 CrossRef
    57. Therneau TM: A Package for Survival Analysis in S. In R package version 237鈥?; 2013.
    58. Aryee, MJ, Jaffe, AE, Corrada-Bravo, H, Ladd-Acosta, C, Feinberg, AP, Hansen, KD (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30: pp. 1363-9 CrossRef
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Microbial Genetics and Genomics; Fungus Genetics; Bioinformatics;
  • 出版者:BioMed Central
  • ISSN:1465-6906
文摘
Background Melanoma is the most fatal skin cancer displaying a high degree of molecular heterogeneity. Phenotype switching is a mechanism that contributes to melanoma heterogeneity by altering transcription profiles for the transition between states of proliferation/differentiation and invasion/stemness. As phenotype switching is reversible, epigenetic mechanisms, like DNA methylation, could contribute to the changes in gene expression. Results Integrative analysis of methylation and gene expression datasets of five proliferative and five invasion melanoma cell cultures reveal two distinct clusters. SOX9 is methylated and lowly expressed in the highly proliferative group. SOX9 overexpression results in decreased proliferation but increased invasion in vitro. In a B16 mouse model, sox9 overexpression increases the number of lung metastases. Transcriptional analysis of SOX9-overexpressing melanoma cells reveals enrichment in epithelial to mesenchymal transition (EMT) pathways. Survival analysis of The Cancer Genome Atlas melanoma dataset shows that metastatic patients with high expression levels of SOX9 have significantly worse survival rates. Additional survival analysis on the targets of SOX9 reveals that most SOX9 downregulated genes have survival benefit for metastatic patients. Conclusions Our genome-wide DNA methylation and gene expression study of 10 early passage melanoma cell cultures reveals two phenotypically distinct groups. One of the genes regulated by DNA methylation between the two groups is SOX9. SOX9 induces melanoma cell invasion and metastasis and decreases patient survival. A number of genes downregulated by SOX9 have a negative impact on patient survival. In conclusion, SOX9 is an important gene involved in melanoma invasion and negatively impacts melanoma patient survival.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700