Guided wave characteristics in functionally graded piezoelectric rings with rectangular cross-sections
详细信息    查看全文
  • 作者:J. G. Yu (1) (2)
    Ch. Zhang (2)
    J. E. Lefebvre (3) (4) (5)

    1. School of Mechanical and Power Engineering
    ; Henan Polytechnic University ; Jiaozuo ; 454003 ; People鈥檚 Republic of China
    2. Department of Civil Engineering
    ; University of Siegen ; 57068 ; Siegen ; Germany
    3. Univ Lille Nord de France
    ; 59000 ; Lille ; France
    4. UVHC
    ; IEMN-DOAE ; 59313 ; Valenciennes Cedex 9 ; France
    5. CNRS
    ; UMR 8520 ; 59650 ; Villeneuve d鈥橝scq ; France
  • 刊名:Acta Mechanica
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:226
  • 期:3
  • 页码:597-609
  • 全文大小:1,269 KB
  • 参考文献:1. Wu, C.C.M., Kahn, M., Moy, W. (1996) Piezoelectric ceramics with functional gradients: a new application in material design. J. Am. Ceram. Soc. 79: pp. 809-812 CrossRef
    2. Takagi, K., Li, J.F., Yokoyama, S., Watanabe, R. (2003) Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators. J. Eur. Ceram. Soc. 23: pp. 1577-1583 CrossRef
    3. Zhu, X., Zhu, J., Zhou, S., Li, Q., Liu, Z. (1999) Microstructures of the monomorph piezoelectric ceramic actuators with functional gradients. Sensors Actuators A Phys. 74: pp. 198-202 CrossRef
    4. Li, X., Vartuli, J.S., Milius, D.L., Aksay, I.A., Shih, W.Y., Shih, W.H. (2001) Electromechanical properties of a ceramic d31-gradient flextensional actuator. J. Eur. Ceram. Soc. 84: pp. 996-1003 CrossRef
    5. Li, J.F., Takagi, K., Ono, M., Pan, W., Watanabe, R. (2003) Fabrication and evaluation of porous ceramics and porosity-graded piezoelectric actuators. J. Eur. Ceram. Soc. 86: pp. 1094-1098 CrossRef
    6. Chen, Y.H., Ma, J., Li, T. (2004) A functional gradient ceramic monomorph actuator fabricated using electrophoretic deposition. Ceram. Int. 30: pp. 683-687 CrossRef
    7. Qui, J., Tani, J., Ueno, T., Morita, T., Takahashi, H., Du, H. (2003) Fabrication and high durability of functionally graded piezoelectric bending actuators. Smart Mater. Struct. 12: pp. 115-121 CrossRef
    8. Jin, D., Meng, Z. (2003) Functionally graded PZT/ZnO piezoelectric composites. J. Mater. Sci. Lett. 22: pp. 971-974 CrossRef
    9. Liu, G.R., Tani, J.: Characteristics of wave propagation in functionally gradient piezoelectric material plates and its response analysis: Part 1: Theory, Part 2: Calculation results. Trans. Jpn. Soc. Mech. Eng. Jpn. 57(A), 2122鈥?133 (1991)
    10. Han, X., Liu, G.R. (2003) Elastic waves in a functionally graded piezoelectric cylinder. Smart Mater. Struct. 12: pp. 962-971 CrossRef
    11. Liu, G.R., Dai, K.Y., Han, X., Ohyoshi, T. (2003) Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates. J. Sound Vib. 268: pp. 131-147 CrossRef
    12. Chakraborty, A., Roy Mahapatra, D., Gopalakrishnan, S.: Finite element simulation of BAW propagation in inhomogeneous plate due to piezoelectric actuation. In: Lecture Notes in Computer Science, pp. 715鈥?24 (2003)
    13. Chakraborty, A., Gopalakrishnan, S., Kausel, E. (2005) Wave propagation analysis in inhomogeneous piezo-composite layer by the thin-layer method. Int. J. Numer. Methods Eng. 64: pp. 567-598 CrossRef
    14. Roy Mahapatra, D., Singhal, A., Gopalakrishnan, S. (2005) Lamb wave characteristics of thickness-graded piezoelectric IDT. Ultrasonics 43: pp. 736-746 CrossRef
    15. Hasheminejad, S.M., Alaei-Varnosfaderani, M. (2012) Vibroacoustic response and active control of a fluid-filled functionally graded piezoelectric material composite cylinder. J. Intell. Mater. Syst. Struct. 23: pp. 775-790 CrossRef
    16. Li, X.Y., Wang, Z.K., Huang, S.H. (2004) Love waves in functionally graded piezoelectric materials. Int. J. Solids Struct. 41: pp. 7309-7328 CrossRef
    17. Liu, J., Wang, Z.K. (2005) The propagation behavior of Love waves in a functionally graded layered piezoelectric structure. Smart Mater. Struct. 14: pp. 137-146 CrossRef
    18. Gao, L.M., Wang, J., Zhong, Zh., Du, J.K. (2009) An analysis of surface acoustic wave propagation in functionally graded plates with homotopy analysis method. Acta Mech. 208: pp. 249-258 CrossRef
    19. Lefebvre, J.E., Zhang, V., Gazalet, J. (2001) Acoustic wave propagation in continuous functionally graded plates, an extension of the Legendre polynomial approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48: pp. 1332 CrossRef
    20. Yu, J.G., Wu, B., Chen, G.Q. (2009) Wave characteristics in functionally graded piezoelectric hollow cylinders. Arch. Appl. Mech. 79: pp. 807-824 CrossRef
    21. Du, J.K., Jin, X.Y., Wang, J., Xian, K. (2007) Love wave propagation in functionally graded piezoelectric material layer. Ultrasonics 46: pp. 13-22 CrossRef
    22. Datta, S., Hunsinger, B.J. (1978) Analysis of surface waves using orthogonal functions. J. Appl. Phys 49: pp. 475-479 CrossRef
    23. Yu, J.G., Wu, B., Huo, H.L., He, C.F. (2007) Characteristics of guided waves in anisotropic spherical curved plates. Wave Motion 44: pp. 271-281 CrossRef
    24. Wu, B., Yu, J.G., He, C.F. (2008) Wave propagation in non-homogeneous magneto-electro-elastic plates. J. Sound Vib. 317: pp. 250-264 CrossRef
    25. Yu, J.G., Wu, B., He, C.F. (2010) Guided thermoelastic waves in functionally graded plates with two relaxation times. Int. J. Eng. Sci. 48: pp. 1709-1720 CrossRef
    26. Yu, J.G. (2011) Viscoelastic shear horizontal wave in graded and layered plates. Int. J. Solids Struct. 48: pp. 2361-2372 CrossRef
    27. Hayashi, T., Song, W.-J., Rose, J. L. (2003) Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41: pp. 175-183 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics, Fluids and Thermodynamics
    Continuum Mechanics and Mechanics of Materials
    Structural Mechanics
    Vibration, Dynamical Systems and Control
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Wien
  • ISSN:1619-6937
文摘
For the purpose of design and optimization of functionally graded piezoelectric material (FGPM) transducers, wave propagation in FGPM structures has received much attention in the past twenty years. But previous research efforts have been focused essentially on semi-infinite structures and one-dimensional structures, i.e., structures with a finite dimension in only one direction, such as horizontally infinite flat plates and axially infinite hollow cylinders. This paper proposes a double orthogonal polynomial series approach to solving the wave propagation problem in a two-dimensional FGPM structure, namely an FGPM ring with a rectangular cross-section. By numerical comparison with the available reference results for a purely elastic homogeneous rectangular rod, the validity of the extended polynomial approach is illustrated. The dispersion curves and the electric potential distributions of various FGPM rectangular rings with different material gradient directions, different polarization directions, different radius to thickness ratios, and different width to thickness ratios are calculated to reveal the guided wave characteristics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700