Landslide hazard, monitoring and conservation strategy for the safeguard of Vardzia Byzantine monastery complex, Georgia
详细信息    查看全文
  • 作者:C. Margottini (1)
    N. Antidze (2)
    J. Corominas (3)
    G. B. Crosta (4)
    P. Frattini (4)
    G. Gigli (5)
    D. Giordan (6)
    I. Iwasaky (7)
    G. Lollino (6)
    A. Manconi (6)
    P. Marinos (8)
    C. Scavia (9)
    A. Sonnessa (10)
    D. Spizzichino (1)
    N. Vacheishvili (11)

    1. ISPRA
    ; Italian Institute for Environmental Protection and Research ; ICL Network on Landslides and Cultural & Natural Heritage ; Rome ; Italy
    2. National Agency for Cultural Heritage Preservation of Georgia
    ; Tbilisi ; Georgia
    3. Department of Geotechnical Engineering and Geosciences
    ; Technical University of Catalonia ; Barcelona ; Spain
    4. Department of Geological Sciences and Geotechnologies
    ; University of Milano-Bicocca ; Milano ; Italy
    5. Earth Sciences Department
    ; University of Firenze ; Firenze ; Italy
    6. Consiglio Nazionale delle Ricerche - Istituto di Ricerca per la Protezione Idrogeologica
    ; 10135 ; Torino ; Italy
    7. Geo-Research Institute
    ; Osaka ; Japan
    8. National Technical Univeristy of Athens
    ; Athens ; Greece
    9. Department of Structural
    ; Geotechnical and Building Engineering ; Technical University of Turin ; Turin ; Italy
    10. Department of Civil
    ; Constructional and Environmental Engineering ; Sapienza University of Rome/SurveyLab ; Sapienza Spinoff ; Rome ; Italy
    11. Agriculture University of Georgia
    ; Centre of Development of Georgian Cultural Heritage Resources ; Tbilisi ; Georgia
  • 关键词:Planar slide and wedge failure ; Rock fall ; Kinematic analysis ; Terrestrial laser scanner ; Mitigation strategy ; Vardzia (Georgia)
  • 刊名:Landslides
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:12
  • 期:1
  • 页码:193-204
  • 全文大小:14,255 KB
  • 参考文献:1. Abell谩n A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119:162鈥?71 CrossRef
    2. Agliardi F, Crosta G (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Scie 40(4):455鈥?71 CrossRef
    3. Agliardi F, Crosta GB, Frattini P (2009) Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat Hazards Earth Syst Sci 9:1059鈥?073 CrossRef
    4. Baldo M, Bicocchi C, Chiocchini U, Giordan D, Lollino G (2009) LIDAR monitoring of mass wasting processes: the Radicofani landslide, Province of Siena, Central Italy. Gemorphology 105:193鈥?01 CrossRef
    5. Barton NR (1973) Review of a new shear-strength criterion for rock joints. Eng Geol 7:287鈥?32 CrossRef
    6. Binal A (2009) Prediction of mechanical properties of non-welded and moderately welded ignimbrite using physical properties, ultrasonic pulse velocity, and point load index tests. Q J Eng Geol Hydrogeol 42:107鈥?22 CrossRef
    7. Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43:27鈥?9 CrossRef
    8. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: A.K. Turner, R.L. Schuster (eds.) Landslides investigation and mitigation (Special report 247, pp. 36-75). Transportation Research Board, Washington, D.C
    9. Corominas J (2013) Avoidance and protection measures. In: Shroder JF (ed) Treatise on Geomorphology, vol 7. Academic Press, San Diego, pp 259鈥?72 CrossRef
    10. Crosta GB, Agliardi F (2003) A new methodology for physically-based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407鈥?22 CrossRef
    11. Crosta GB, Agliardi F (2004) Parametric evaluation of 3D dispersion of rockfall trajectories. Nat Hazards Earth Syst Sci 4:583鈥?98 CrossRef
    12. Del Potro R, H眉rlimann M (2009) The decrease in the shear strength of volcanic materials with argillic hydrothermal alteration, insights from the summit region of Teide stratovolcano, Tenerife. Eng Geol 104:135鈥?43 CrossRef
    13. Einstein HH, Veneziano D, Baecher G, O鈥橰eilly K (1983) The effect of discontinuity persistence on rock slope stability. Int J Rock Mech Min Sci Geomech Abstr 20:227鈥?36 CrossRef
    14. Elashvili M, Javakhishvili Z (2004) http://www.fdsn.org/meetings/2004/Georgia_FDSN_2004.pdf
    15. Ershov AV, Brunet MF, Korotaev MV, Nikishin AM, Bolotov SN (1999) Late Cenozoic burial history and dynamics of the Northern Caucasusmolasse basin: implication for foreland basin modeling. Tectonophysics 313:219鈥?41 CrossRef
    16. Frattini P, Crosta GB, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94:419鈥?37. doi:10.1016/j.geomorph.2006.10.037 CrossRef
    17. Gamkrelidze IP (1986) Geodynamic evolution of the Caucasian and adjacent areas in Alpine time. In: Zoneshain LP (Ed.), Tectonics of the Eurasian Fold Belts. Tectonophysics 127, 261-277
    18. Gaprindashvili G (1975) (in English, Russian, Georgian) Ancient monuments of Georgia: Vardzia. Aurora Art Publishers, Leningrad, pp 7鈥?5. ISBN 978-1-135-68320-7
    19. Gigli G, Casagli N (2011) Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int J Rock Mech Min Sci 48:187鈥?98 CrossRef
    20. Gillespie MR, Styles MT (1999) BGS ROCK Classification Scheme Volume 1 Classification of Igneous Rocks. British Geological Survey Research Reports (2nd edition) RR 99-06
    21. Gudjabidze GE, Gamkrelidze IP (2003) Geological Map of Georgia, 1:500.000. Georgian State Department of Geology and National Oil Company 鈥淪aqnavtobi鈥?/span>
    22. Hoek E (2007) Practical Rock Engineering (2007 edition) http://www.rocscience.com
    23. ISRM - Commission on Standardization of Laboratory and Field Tests (1978) 鈥?Suggested methods for the quantitative description of discontinuities in rock masses. Int. Journ. Rock Mech. Min. Sci. & Geomech. Abstracts 15, n.6, 319-368
    24. ISRM- Commission on Classification of Rocks and Rock Masses (1981) - Basic geotechnical description of rock masses. Int. Journ. Rock Mech. Min. Sci. & Geomech. Abstracts 18, 85-110
    25. Jennings JE (1970) A mathematical theory for the calculation of the stability of open cast mines. Proc. Symposium on the Theoretical background to the Planning of Open Pit Mines. Johannesburg. pp. 87-102
    26. Lembo Fazio A, Manfredini G, Ribacchi R, Sciotti M (1984) Slope failures and cliff instability in the Orvieto hill. 4th Int. Symp. on Landslides, Toronto, 2, 115-120
    27. Margottini C, Marsella M, Orlando L, Pandolfi O, Soddu P, Sonnessa A, Spizzichino D, Delmonaco G, Cardareli G, De Donno G (2009) Low impact investigation techniques for parameterization and conservation of Cultural Heritage: the case study of Moai statues at Easter Island (Chile). Geoitalia 2009 - sesto forum italiano di scienze della terra, Rimini 09-11 settembre
    28. Margottini C, Spizzichino D (2009) The management of cultural and environmental heritage sites: a pivot for conservation and enhancement. Proceedings of the first International Symposium on Danxia Landform. The 2nd collection. Danxiashan, Guadong (China), 26-28 May, 2009
    29. Margottini C, Spizzichino D (2014) How geology shapes human settlements. In Bandarin F. & van Oers R. (eds.), Reconnecting the city. The Historic Urban Landscape Approach and the Future of Urban Heritage. Chichester: Wiley Blackwell
    30. Mavrouli O, Corominas J, Wartman J (2009) Methodology to evaluate rock slope stability under seismic conditions at Sol谩 de Santa Coloma. Andorra Nat Hazards Earth Syst Sci 9:1763鈥?773 CrossRef
    31. Mitchell J, Westaway R (1999) Chronology of Neogene and Quaternary uplift and magmatism in the Caucasus: con-straints from K-Ar dating of volcanism in Armenia. Tectonophysics 304:157鈥?86 CrossRef
    32. Moon VG (1993) Microstructural controls on the geomechanical behavior of ignimbrite. Eng Geol 35:19鈥?1 CrossRef
    33. Nichol SL, Hungr O, Evans SG (2002) Large-scale brittle and ductile toppling of rock slopes. Can Geotech J 39:773鈥?88 CrossRef
    34. Tu臒rul A (2004) The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Eng Geol 75:215鈥?27 CrossRef
    35. Pola A, Crosta G, Fusi N, Barberini V, Norini G (2012) Influence of alteration on physical properties of volcanic rocks. Tectonophysics 566鈥?67:67鈥?6 CrossRef
    36. Rodr铆guez-Losada JA, Hern谩ndez-Guti茅rrez LE, Olalla C, Perucho A, Serrano A, Eff-Darwich A (2009) Geomechanical parameters of intact rocks and rock masses from the Canary Islands: implications on their flank stability. J Volcanol Geotherm Res 182:67鈥?5 CrossRef
    37. SHRAP (2009) APRIL Progress Report 鈥?2009, Seismic Hazard and Risk Assessment for Southern Caucasus-Eastern Turkey Energy Corridors (SHRAP) http://www.koeri.boun.edu.tr/depremmuh/eski/nato/project/pdf/progress1_983038.pdf
    38. SHRAP (2010) MAY Progress Report 鈥?2010, Seismic Hazard and Risk Assessment for Southern Caucasus-Eastern Turkey Energy Corridors (SHRAP) http://www.koeri.boun.edu.tr/depremmuh/eski/nato/project/pdf/progress3_983038.pdf
    39. Scavia C (1995) A method for the study of crack propagation in rock structures, G茅otecnique, 45, No 3, 447-463, The institution of civil engineers, London
    40. Spizzichino D, Delmonaco G, Margottini C (2009) Geo-structural modelling for potential large rock slide in Machu Picchu- European Geosciences Union 2009 General Assembly, Vienna Austria, 19-24 April
    41. Turner AK, Schuster RL (1996) Landslides investigation and mitigation (Special report 247) Transportation Re-search Board: Washington D.C., pp. 673
    42. WP/WLI (1993) A suggested method for describing the activity of a landslide. Bull Int Assoc Eng Geol 47:53鈥?7 CrossRef
    43. VanDine DF (1996) Debris flow control structures for forest engineering: British Columbia Ministry of Forests Research Program, Victoria, B.C., Working Paper 08/1996. www.for.gov.bc.ca/hfd/pubs/Docs/Wp/Wp22.htm. Accessed 12 Nov 2009
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Applied Geosciences
    Geography
    Agriculture
    Civil Engineering
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1612-5118
文摘
This paper reports preliminary results of a feasibility project developed in cooperation with National Agency for Cultural Heritage Preservation of Georgia, and aimed at envisaging the stability conditions of the Vardzia monastery slope (rupestrian city cave in the south-western Georgia). The aim is the implementation of a low-impact monitoring system together with long-term mitigation/conservation policies. A field analysis was conducted to reconstruct geometry of the rocky cliff, characteristics of discontinuities, main failure modes, and volume of potential unstable blocks and geomechanical parameters. Instability processes are the combination of causative factors such as the following: lithology, frequency and orientation of discontinuities, slope orientation, physical and mechanical characteristics of slope-forming materials, and morphological and hydrological boundary conditions. The combined adoption of different survey techniques (e.g., 3D laser scanner, ground-based radar interferometry) could be the best solution in the interdisciplinary field of cultural heritage preservation policies. The collected data will be the basis for future activities to be completed in collaboration with local authorities for a complete hazard and risk characterization for the monastery site and the development of an early warning system to allow safe exploitation for touristic activities and for historical site preservation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700