EBSD Study of Damage Mechanisms in a High-Strength Ferrite-Martensite Dual-Phase Steel
详细信息    查看全文
  • 作者:N. Saeidi (1)
    F. Ashrafizadeh (1)
    B. Niroumand (1)
    F. Barlat (2)

    1. Department of Materials Engineering
    ; Isfahan University of Technology ; Isfahan ; 84156-83111 ; Iran
    2. Materials Mechanics Laboratory (MML)
    ; Graduate Institute of Ferrous Technology (GIFT) ; Pohang University of Science and Technology (POSTECH) ; San 31 Hyoja-dong ; Nam-gu ; Pohang ; Gyeongbuk ; 790-784 ; Republic of Korea
  • 关键词:dual ; phase steel ; EBSD analysis ; void nucleation micro ; mechanisms
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:24
  • 期:1
  • 页码:53-58
  • 全文大小:1,815 KB
  • 参考文献:1. H. Jin, W.Y. Ln, J.W. Foulk, A. Mota, G. Johnson, and J. Korellis, An Examination of Anisotropic Void Evolution in Aluminum Alloy 7075, / Exp. Mech., 2013, 53, p 1583鈥?596 CrossRef
    2. J. Pospiech, Ductile Fracture of Carbon Steels: A Review, / J. Mater. Eng. Perform., 1995, 4, p 82鈥?9 CrossRef
    3. J.K. Cuddy and M.N. Bassim, Ductile Fracture Mechanisms in AISI, 4340 Steel, / Mater. Sci. Eng. A., 1990, 125, p 43鈥?8 CrossRef
    4. E. Ahmad, T. Manzoor, M.M.A. Ziai, and N. Hussain, Effect of Martensite Morphology on Tensile Deformation of Dual-Phase Steel, / J. Mater. Eng. Perform., 2012, 21, p 382鈥?87 CrossRef
    5. G. Avramovic-Cingara, Y. Ososkova, M.K. Jain, and D.S. Wilkinson, Effect of Martensite Distribution on Damage Behavior in DP600 Dual Phase Steels, / Mater. Sci. Eng. A., 2009, 516, p 7鈥?6 CrossRef
    6. G. Avramovic-Cingara, Y. Ososkova, M.K. Jain, and D.S. Wilkinson, Void Nucleation and Growth in Dual-Phase Steel 600 During Uniaxial Tensile Testing, / Metall. Mater. Trans. A., 2009, 40, p 3117鈥?127 CrossRef
    7. J. Kadkhodapour, A. Butz, and S. Ziaei Rad, Mechanisms of Void Formation During Tensile Testing in a Commercial, Dual-Phase Steel, / Acta. Mater., 2011, 59, p 2575鈥?588 2010.12.039" target="_blank" title="It opens in new window">CrossRef
    8. M. Calcagnotto, D. Ponge, and D. Raabe, Effect of Grain Refinement to 1聽渭m on Strength and Toughness of Dual-Phase Steels, / Mater. Sci. Eng. A., 2010, 527, p 7832鈥?840 2010.08.062" target="_blank" title="It opens in new window">CrossRef
    9. X. Pan, X. Wu, K. Mo, X. Chen, J. Almer, J. Ilavsky, D.R. Haeffner, and J.F. Stubbins, Lattice Strain and Damage Evolution of 9-12% Cr Ferritic/Martensitic Steel During In Situ Tensile Test by X-Ray Diffraction and Small Angle Scattering, / Nucl. Mater., 2010, 407, p 10鈥?5 2010.07.003" target="_blank" title="It opens in new window">CrossRef
    10. K. Kocatepe, M. Cerah, and M. Erdogan, The Tensile Fracture Behavior of Intercritically Annealed and Quenched Tempered Ferritic Ductile Iron with Dual Matrix Structure, / Mater. Des., 2007, 28, p 172鈥?81 CrossRef
    11. M. Sarwar, E. Ahmad, K.A. Qureshi, and T. Manzoor, Influence of Epitaxial Ferrite on Tensile Properties of Dual Phase Steel, / Mater. Des., 2007, 28, p 335鈥?40 CrossRef
    12. Annual book of ASTM Standards, A370, 2001.
    13. K. Fujiyama, K. Mori, D. Kaneko, H. Kimachi, T. Saito, R. Ishii, and T. Hino, Creep Damage Assessment of 10Cr-1Mo-1W-VNbN Steel Forging Through EBSD Observation, / Int. J. Pres. Ves. Pip., 2009, 86, p 570鈥?77 CrossRef
    14. K. Fujiyama, K. Mori, D. Kaneko, H. Kimachi, T. Saito, R. Ishii, and T. Hino, Creep-Damage Assessment of High Chromium Heat Resistant Steels and Weldments, / Mater. Sci. Eng. A., 2009, 510鈥?11, p 195鈥?01 CrossRef
    15. P.A. Karnezis, G. Durrant, and B. Cantor, Characterization of Reinforcement Distribution in Cast Al-Alloy/SiCp Composites, / Mater. Charact., 1988, 40, p 97鈥?09 CrossRef
    16. N. Saeidi, F. Ashrafizadeh, B. Niroumand, and F. Barlat, Evaluation of Fracture Micromechanisms in a Fine Grained Dual Phase Steel During Uniaxial Tensile Deformation, / J. Iron Steel Res. Int., 2014, 84, p 1386鈥?392
    17. M. Calcagnotto, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, / Acta. Mater., 2011, 59, p 658鈥?70 2010.10.002" target="_blank" title="It opens in new window">CrossRef
    18. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei Rad, U. Weber, and M. Calcagnotto, Experimental and Numerical Study on Geometrically Necessary Dislocations and Non-homogeneous Mechanical Properties of the Ferrite Phase in Dual Phase Steels, / Acta. Mater., 2011, 59, p 4387鈥?394 2011.03.062" target="_blank" title="It opens in new window">CrossRef
    19. S. Lefebvre, B. Devincre, and T. Hoc, Yield Stress Strengthening in Ultrafine-Grained Metals: A Two-Dimensional Simulation of Dislocation Dynamics, / J. Mech. Phys. Solids., 2007, 55, p 788鈥?02 CrossRef
    20. L. Zhonghua and G. Haicheng, Bauschinger Effect and Residual Phase Stresses in Two Ductile-Phase Steels: Part I. The Influence of Phase Stresses on the Bauschinger Effect, / Metall. Trans. A., 1990, 21, p 717鈥?24 CrossRef
    21. A.L. Helbert, X. Feaugas, and M. Clavel, Effects of Microstructural Parameters and Back Stress on Damage Mechanisms in 伪/尾 Titanium Alloys, / Acta. Mater., 1998, 46, p 939鈥?51 CrossRef
    22. M. Erdogan and S. Tekeli, The Effect of Martensite Particle Size on Tensile Fracture of Surface-Carburised AISI, 8620 Steel with Dual Phase Core Microstructure, / Mater. Des., 2002, 23, p 597鈥?04 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
Electron backscattered diffraction (EBSD) analyses were performed on a fine-grained dual-phase (DP) sheet steel subjected to uniform tensile deformation and the preferred void nucleation sites as well as the micro-mechanisms of void formation were examined. EBSD study of grain average misorientation, grain orientation spread and kernel average misorientation of the deformed microstructure revealed that voids nucleation initially happened at ferrite-martensite interfaces neighboring rather large ferrite grains. This is believed to be mainly due to the higher shear deformation ability of the larger ferrite grains, the higher number of dislocation pile-ups at the martensite particles and the less uniform strain distribution within the larger ferrite grains compared to the smaller ones. The results demonstrated the impact of increasing uniform strain distribution within the DP microstructure on lowering the void nucleation probability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700