Improving accuracy of curved corners in wire EDM successive cutting
详细信息    查看全文
  • 作者:Hamid Abyar Firouzabadi (1)
    Jamshid Parvizian (2)
    Amir Abdullah (3)

    1. Department of Mechanical Engineering
    ; Yazd University ; Meybod ; Iran
    2. Department of Mechanical Engineering
    ; Isfahan University of Technology ; Isfahan ; 8415683111 ; Iran
    3. Department of Mechanical Engineering
    ; Amirkabir University of Technology ; Tehran ; Iran
  • 关键词:WEDM ; Dimensional accuracy of corners ; Corner radii ; Residual material
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:76
  • 期:1-4
  • 页码:447-459
  • 全文大小:1,939 KB
  • 参考文献:1. Kalpakjian S, Schmid SR (2005) Manufacturing, engineering and technology. 5th edition, Prentice Hall
    2. Hsue WJ, Liao YS, Lu SS (1999) Fundamental geometry analysis of wire electrical discharge machining in corner cutting. Int J Mach Tools Manuf 39:651鈥?67 CrossRef
    3. Sanchez JA, Rodil JL, Herrero A, De Lacalle LNL, Lamikiz A (2007) On the influence of cutting speed limitation on the accuracy of wire-EDM corner-cutting. J Mater Process Technol 182(1鈥?):574鈥?79 CrossRef
    4. Dekeyser WL, Snoeys R (1989) Geometrical accuracy of wire-EDM. 9th Int Symp on Electro Machining (ISEM-9): 226鈥?32, Japan
    5. Hsue WJ, Liao YS, Lu SS (1999) A study of corner control strategy of wire-EDM based on quantitative MRR analysis. Int J Electr Mach 4:33鈥?9
    6. Obara H, Kawai T, Ohsumi T, Hatano M (2003) Combined power and path control method to improve corner accuracy of rough cuts by wire EDM (1st report). Int J Electr Mach 8:27鈥?2
    7. Obara H, Kawai T, Ohsumi T, Hatano M (2003) Combined power and path control method to improve corner accuracy of rough cuts by wire EDM (2nd report). Int J Electr Mach 8:33鈥?8
    8. Sanchez JA, De Lacalle LNL, Lamikiz A (2004) A computer aided system for the optimization of the accuracy of the wire electro-discharge machining process. Int J Comput Integr Manuf 17(5):413鈥?20. doi:10.1080/09511920310001626590 CrossRef
    9. Mingqi L, Minghui L, Guangyao X (2005) Study on the variations of form and position of the wire electrode in WEDM-HS. Int J Adv Manuf Technol 25:929鈥?34. doi:10.1007/s00170-003-1915-4 CrossRef
    10. Han F, Zhang J, Soichiro I (2007) Corner error simulation of rough cutting in wire EDM. Precis Eng 31(4):331鈥?36. doi:10.1016/j. precisioneng.2007.01.005 CrossRef
    11. Han F, Cheng G, Feng Z, Isago S (2008) Thermo-mechanical analysis and optimal tension control of micro wire electrode. Int J Mach Tools Manuf 48:922鈥?31 CrossRef
    12. Dodun O, Gon莽alves-Coelho AM, Sl膬tineanu L, Nag卯牛 G (2008) Using wire electrical discharge machining for improved corner cutting accuracy of thin parts. Int J Adv Manuf Technol. doi:10.1007/s00170-008-1531-4
    13. ASM Handbook Committee (1991) ASM handbook, volume 4: heat treating
    14. Charmilles Company (1989) User manual ROBOFIL 200. Charmilles Technologies, Switzerland
    15. Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York
    16. Chelladurai H, Jain VK, Vyas NS (2010) Development of a cutting tool condition monitoring system for high speed turning operation by vibration and strain analysis. Int J Adv Manuf Technol 37:471鈥?85. doi:10.1007/s00170-007-0986-z CrossRef
    17. Pradhan M, Biswas CK (2010) Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISI D2 steel. Int J Adv Manuf Technol 50:591鈥?10. doi:10.1007/s00170-010-2531-8 CrossRef
    18. Jain VK, Mote RG (2005) On the temperature and specific energy during electrodischarge diamond grinding (EDDG). Int J Adv Manuf Technol 26:56鈥?7. doi:10.1007/s00170-003-1983-5 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Production and Logistics
    Mechanical Engineering
    Computer-Aided Engineering and Design
  • 出版者:Springer London
  • ISSN:1433-3015
文摘
Wire electrical discharge machining (WEDM) has a significant position among production technologies mainly due to its capacity of machining hard materials and intricate shapes. One of the major problems with this process is the error in cutting small-radius corners. Processing forces acting on the wire and low rigidity of the wire are responsible for wire deflection, which has a direct influence on the accuracy of the corner cutting. In this research, investigation is focused on small-radius convex and concave corner radii errors, and alternative solutions are proposed for the case of successive cuts (one roughing and two finishings). Initial experiments are carried out for roughing operation by considering frequency of discharges and feed speed as input variables. Residual materials on straight and small-radius convex curved paths are the output parameters. One important conclusion is that roughing is the most influential stage of cutting by WEDM. Results also indicate that optimization of these input parameters has a better influence on controlling the residual material thickness on straight paths than on small-radius convex curved corners. Further experiments are carried out by considering the influence of corner angle and corner radii on small-radius concave corners in successive corner cuts. Errors at radii of different corner angles are identified and relations established to arc length and residual material thickness in the curved corner. Finally, an effective approach is presented to improve accuracy of small-radius concave corners at finishing stage. The main conclusion is that to achieve accurate corner radii, one must increase the traversed corner arc length by wire in the small-radius concave corner.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700