Cyclic gait planning and control of a five-link biped robot with four actuators during single support and double support phases
详细信息    查看全文
  • 作者:Reza Dehghani (1)
    Abbas Fattah (2)
    Esmaeil Abedi (3)

    1. Department of Mechanical Engineering
    ; Graduate University of Advanced Technology ; Kerman ; Iran
    2. Department of Mechanical Engineering
    ; Isfahan University of Technology ; Isfahan ; 8415683111 ; Iran
    3. Department of Mechanical Engineering
    ; Majlesi Branch ; Islamic Azad University ; Isfahan ; Iran
  • 关键词:Biped robot ; Underactuation ; Over ; actuation ; Time optimal control ; Receding horizon control
  • 刊名:Multibody System Dynamics
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:33
  • 期:4
  • 页码:389-411
  • 全文大小:1,679 KB
  • 参考文献:1. Tlalolini, D., Chevallereau, C., Aoustin, Y. (2009) Comparison of different gaits with rotation of the feet for a planar biped. Robot. Auton. Syst. 57: pp. 371-383 CrossRef
    2. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B. (2007) Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor & Francis/CRC Press, London/Boca Raton 201/9781420053739" target="_blank" title="It opens in new window">CrossRef
    3. Miossec, S., Aoustin, Y. (2006) Dynamical synthesis of a walking cyclic gait for a biped with point feet. Fast Motions in Biomechanics and Robotics. Springer, Berlin
    4. Tlalolini, D., Aoustin, Y., Chevallereau, C. (2010) Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization. Multibody Syst. Dyn. 23: pp. 33-56 CrossRef
    5. Kanniah, J., Lwin, Z.N. (2008) ZMP compliant gait generation strategies for seven-mass biped robots. Int. J. Humanoid Robot. 5: pp. 609-637 CrossRef
    6. Xie, M., Zhong, Z.W., Zhang, L., Xian, L.B., Wang, L., Yang, H.J., Song, C.S., Li, J. (2009) A deterministic way of planning and controlling biped walking of LOCH humanoid robot. Ind. Robot 36: pp. 314-325 CrossRef
    7. Goswami, A. (1999) Postural stability of biped robot and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18: pp. 523-533 CrossRef
    8. Vukobratovic, M., Borovac, B. (2004) Zero-moment point鈥攖hirty five years of its life. Int. J. Humanoid Robot. 1: pp. 157-173 CrossRef
    9. Chevallereau, C., Grizzle, J.W., Shih, C.L. (2009) Asymptotically stable walking of a five-link under-actuated 3D bipedal robot. IEEE Trans. Robot. 25: pp. 37-50 2010366" target="_blank" title="It opens in new window">CrossRef
    10. Dehghani, R., Fattah, A. (2011) Stable gait planning and robustness analysis of a biped robot with one degree of underactuation. Int. J. Robot. 2: pp. 1-11
    11. Formal鈥檚ky, A. (2006) Stabilization of an inverted pendulum with a fixed or movable suspension point. Dokl. Math. 73: pp. 175-179 CrossRef
    12. Westervelt, E.R., Buche, G., Grizzle, J.W. (2004) Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. Int. J. Robot. Res. 23: pp. 559-582 CrossRef
    13. Meghdari, A., Sohrabpour, S., Naderi, D., Tamaddoni, S.H., Jafari, F., Salarieh, H. (2008) A novel method of gait synthesis for bipedal fast locomotion. J. Intell. Robot. Syst. 53: pp. 101-118 CrossRef
    14. Nikkhah, M., Ashrafiuon, H., Fahimi, F. (2007) Robust control of under-actuated bipeds using sliding modes. Robotica 25: pp. 367-374 CrossRef
    15. Sreenath, K., Park, H.W., Poulakakis, I., Grizzle, J.W. (2011) A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 30: pp. 1170-1193 CrossRef
    16. Font-Llagunes, J.M., K枚vecses, J. (2009) Dynamics and energetics of a class of bipedal walking systems. Mech. Mach. Theory 44: pp. 1999-2019 CrossRef
    17. Agrawal, S.K., Fattah, A. (2006) Motion control of a novel planar biped with nearly linear dynamics. IEEE/ASME Trans. Mechatron. 11: pp. 162-168 CrossRef
    18. Westervelt, E.R., Grizzle, J.W., Koditschek, D.E. (2003) Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48: pp. 42-56 CrossRef
    19. Dehghani, R., Fattah, A. (2010) Stability analysis and robust control of a planar under-actuated biped robot. Int. J. Humanoid Robot. 7: pp. 535-563 CrossRef
    20. Kim, J.H. (2011) Optimization of throwing motion planning for whole-body humanoid mechanism: sidearm and maximum distance. Mech. Mach. Theory 46: pp. 438-453 2010.11.019" target="_blank" title="It opens in new window">CrossRef
    21. Zonfrilli, F., Oriolo, G., Nardi, D. (2002) A biped locomotion strategy for the quadruped robot Sony ERS-210. IEEE Conf. Robot. Autom. pp. 2768-2774
    22. Chemori, A., Loria, A. (2004) Control of a planar under-actuated biped on a complete walking cycle. IEEE Trans. Autom. Control 49: pp. 838-843 CrossRef
    23. Miossec, S., Aoustin, Y. (2005) A simplified stability study for a biped walk with under-actuated and over-actuated phases. Int. J. Robot. Res. 24: pp. 537-551 CrossRef
    24. Dehghani, R., Fattah, A. (2011) Nonlinear observer design with finite time convergence for estimation of unactuated angular variables of an under-actuated biped robot. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 225: pp. 331-344 CrossRef
    25. Strang, G. (1988) Linear Algebra and Its Applications. Harcourt Brace Jovanovich, San Diego
    26. Angeles, J. (2003) Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms. Springer, Berlin CrossRef
    27. Chaiyaratana, N., Zalzala, A.M.S. (2002) Time-optimal path planning and control using neural networks and a genetic algorithm. Int. J. Comput. Intell. Appl. 2: pp. 153-172 CrossRef
    28. Grishin, A.A., Formal鈥檚ky, A.M., Lensky, A.V., Zhitomirsky, S.V. (1994) Dynamic walking of a vehicle with two telescopic legs controlled by two drives. Int. J. Robot. Res. 13: pp. 137-147 CrossRef
    29. Lewis, F.L., Dawson, D.M., Abdallah, C.T. (2004) Robot Manipulator Control Theory and Practice. Dekker, New York
    30. Chevallereau, C., Formal鈥檚ky, A., Djoudi, D. (2004) Tracking a joint path for the walk of an under-actuated biped. Robotica 22: pp. 15-28 CrossRef
    31. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M. (2000) Constrained model predictive control: stability and optimality. Automatica 36: pp. 789-814 CrossRef
    32. Kwon, W., Bruckstein, A., Kailath, T. (1983) Stabilizing state-feedback design via the moving horizon method. Int. J. Control 37: pp. 631-643 CrossRef
    33. Geering, H.P. (2007) Optimal Control with Engineering Applications. Springer, Berlin
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Optimization
    Electronic and Computer Engineering
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-272X
文摘
This paper focuses on cyclic gait planning and motion control of a five-link biped robot with four actuators. The biped walking consists of two alternative phases of motion: single support phase (SSP) and double support phase (DSP). The biped robot is under-actuated and over-actuated during the SSP and DSP, respectively. Because of the underactuation problem in the SSP, time trajectories cannot be obtained directly and control motion is difficult. Hence, a new algorithm is proposed for cyclic gait planning during the successive single and double support phases. Two control laws are proposed for the control motion during the SSP and the DSP. In the SSP, the control law is developed using a predictive control algorithm and a time optimal control is proposed for the DSP. Attraction region and convergence to the cyclic gait are studied. The results demonstrate the effectiveness of the proposed method in the biped motion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700