Analytical higher-order model for flexible and stretchable sensors
详细信息    查看全文
  • 作者:Yongfang Zhang (1) (2) (3)
    Hongbin Zhu (4)
    Cheng Liu (1)
    Xu Liu (5)
    Fuxi Liu (4)
    Yanjun L眉 (2) (3) (4)

    1. School of Printing and Packaging Engineering
    ; Xi鈥檃n University of Technology ; Xi鈥檃n ; 710048 ; China
    2. State Key Laboratory for Strength and Vibration of Mechanical Structures
    ; Xi鈥檃n Jiaotong University ; Xi鈥檃n ; 710049 ; China
    3. College of Engineering
    ; Michigan State University ; East Lansing ; MI ; 48824 ; USA
    4. School of Mechanical and Precision Instrument Engineering
    ; Xi鈥檃n University of Technology ; Xi鈥檃n ; 710048 ; China
    5. School of Mechanical Engineering
    ; Xi鈥檃n Aeronautical University ; Xi鈥檃n ; 710077 ; China
  • 关键词:flexible and stretchable sensors ; higher ; order shear ; lag model ; normal stress ; shear stress
  • 刊名:Chinese Journal of Mechanical Engineering
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:28
  • 期:2
  • 页码:379-386
  • 全文大小:790 KB
  • 参考文献:1. Khang, D Y, Jiang, H Q, Huang, Y (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science 311: pp. 208-212 science.1121401" target="_blank" title="It opens in new window">CrossRef
    2. Song, J, Jiang, H, Huang, Y (2009) Mechanics of stretchable inorganic electronic materials[J]. Journal of Vacuum Science and Technology A 27: pp. 1107-1125 CrossRef
    3. Kim, D H, Liu, Z J, Kim, Y S (2009) Optimized structural designs for stretchable silicon integrated circuits[J]. Small 5: pp. 2841-2847 CrossRef
    4. Rogers, J A, Someya, T, Huang, Y G (2010) Materials and mechanics for stretchable electronics[J]. Science 327: pp. 1603-1607 science.1182383" target="_blank" title="It opens in new window">CrossRef
    5. Kim, D H, Ghaffari, R, Lu, N S (2012) Flexible and stretchable electronics for biointegrated devices[J]. Annual Review of Biomedical Engineering 14: pp. 113-128 CrossRef
    6. Wang, Y, Yang, R, Shi, Z W (2011) Super-elastic graphene ripples for flexible strain sensors[J]. ACS Nano 5: pp. 3645-3650 CrossRef
    7. Song, J, Jiang, H, Liu, Z J (2008) Buckling of a stiff thin film on a compliant substrate in large deformation[J]. International Journal of Solids and Structures 45: pp. 3107-3121 CrossRef
    8. Cheng, H, Wu, J, Li, M (2011) An analytical model of strain isolation for stretchable and flexible electronics[J]. Applied Physics Letter 98: pp. 061902-1-3 CrossRef
    9. Wu, J, Li, M, Chen, W Q (2010) A strain-isolation design for stretchable electronics[J]. Acta Mechanica Sinica 26: pp. 881-888 CrossRef
    10. Song, J, Jiang, H, Choi, W M (2008) An analytical study of two-dimensional buckling of thin films on compliant substrates[J]. Journal of Applied Physics 103: pp. 014303-1-10 CrossRef
    11. Xiao, J, Carlson, A, Liu, Z J (2010) Analytical and experimental studies of the mechanics of deformation in a solid with a wavy surface profile[J]. ASME Journal of Applied Mechanics 77: pp. 011003-1-6 CrossRef
    12. Jiang, H Q, Khang, D Y, Song, J Z (2007) Finite deformation mechanics in buckled thin films on compliant supports[J]. Proceedings of the National Academy of Sciences of the United States of America 104: pp. 1 5607-1 5612 CrossRef
    13. Chen, X, Hutchinson, J W (2004) Herringbone buckling patterns of compressed thin films on compliant substrates[J]. ASME Journal of Applied Mechanics 71: pp. 597-603 CrossRef
    14. Xiao, J, Carlson, A, Liu, Z J (2008) Stretchable and compressible thin films of stiff materials on compliant wavy substrates[J]. Applied Physics Letters 93: pp. 013109-1-3 CrossRef
    15. Gonzalez, M, Vandevelde, B, Christiaens, W (2011) Design and implementation of flexible and stretchable systems[J]. Microelectronics Reliability 51: pp. 1069-1076 CrossRef
    16. GONZALEZ M, AXISA F, VANDEN BULCK M, et al. Design of metal interconnects for stretchable electronic circuits using finite element analysis[C]// / Proceedings of the 8th International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, London, England, 16鈥?8 April, 2007: 110鈥?15.
    17. Hsu, Y Y, Gonzalez, M, Bossuyt, F (2009) In situ observations on deformation behavior and stretching-induced failure of fine pitch stretchable interconnect[J]. Journal of Materials Research 24: pp. 3573-3582 CrossRef
    18. Van Der Sluis, O, Hsu, Y Y, Timmermans, P H M (2010) Numerical and experimental analysis of stretching induced interconnect delamination for stretchable electronic circuits[C]. Proceedings of the 18th European Conference on Fracture, Fracture of Materials and Structures from Micro to Macro Scale, Dresden, Germany, 30 August-3 September. pp. 1-8
    19. Hsu, Y Y, Gonzalez, M, Bossuyt, F (2011) Polyimide-enhanced stretchable interconnects: design, fabrication, and characterization [J]. IEEE Transactions on Electron Devices 58: pp. 2680-2688 CrossRef
    20. Van Der Sluis, O, Hsu, Y Y, Timmermans, P H M (2011) Stretching induced interconnect delamination in stretchable electronic circuits[J]. Journal of Physics D: Applied Physics 44: pp. 034008-1-19 CrossRef
    21. Song, J, Huang, Y, Xiao, J (2009) Mechanics of noncoplanar mesh design for stretchable electronic circuits[J]. Journal of Applied Physics 105: pp. 123516-1-6 CrossRef
    22. Su, Y W, Liu, Z J, Kim, S (2012) Mechanics of stretchable electronics with high fill factors[J]. International Journal of Solids and Structures 49: pp. 3416-3421 CrossRef
  • 刊物主题:Mechanical Engineering; Theoretical and Applied Mechanics; Manufacturing, Machines, Tools; Engineering Thermodynamics, Heat and Mass Transfer; Power Electronics, Electrical Machines and Networks; Electronics and Microelectronics, Instrumentation;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2192-8258
文摘
The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil. The design methodology is important to the development of the stretchable sensor for status monitoring on the foldable airfoil. According to the requirement of mechanical flexibility of the sensor, the combined use of a layered flexible structural formation and a strain isolation layer is implemented. An analytical higher-order model is proposed to predict the stresses of the strain-isolation layer based on the shear-lag model for the safe design of the flexible and stretchable sensors. The normal stress and shear stress equations in the constructed structure of the sensors are obtained by the proposed model. The stress distribution in the structure is investigated when bending load is applied to the structures. The numerical results show that the proposed model can predict the variation of normal stress and shear stress along the thickness of the strain-isolation (polydimethylsiloxane) layer accurately. The results by the proposed model are in good agreement with the finite element method, in which the normal stress is variable while the shear stress is invariable along the thickness direction of strain-isolation layer. The high-order model is proposed to predict the stresses of the layered structure of the flexible and stretchable sensor for monitoring the status of the foldable airfoil.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700