On the origin of viscoelastic Taylor-Couette instability resulted from normal stress differences
详细信息    查看全文
  • 作者:M. Norouzi (1)
    M. H. Sedaghat (1)
    M. M. Shahmardan (1)
    M. R. H. Nobari (2)

    1. Department of Mechanical Engineering
    ; Shahrood University of Technology ; Shahrood ; Iran
    2. Department of Mechanical Engineering
    ; Amirkabir University of Technology ; Tehran ; Iran
  • 关键词:Taylor ; Couette instability ; viscoelastic fluid ; normal stress differences ; rotating cylinders ; secondary flows
  • 刊名:Korea-Australia Rheology Journal
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:27
  • 期:1
  • 页码:41-53
  • 全文大小:1,786 KB
  • 参考文献:1. Alziary de Roquefort, T., Grillaud, G. (1978) Computation of Taylor vortex flow by a transient implicit method. Comput. Fluids 6: pp. 259-269 CrossRef
    2. Apostolakis, M.V., Mavrantzas, V.G., Beris, A.N. (2002) Stress gradient-induced migration effects in the Taylor-Couette flow of a dilute polymer solution. J. Non-Newt. Fluid 102: pp. 409-445 CrossRef
    3. Avgousti, M., Beris, A.N. (1993) Non-axisymmetric modes in viscoelastic Taylor-Couette flow. J. Non-Newt. Fluid 50: pp. 225-251 CrossRef
    4. Baumert, B.M., Liepmann, D., Muller, S.J. (1997) Digital particle image velocimetry in flows with nearly closed path lines: the viscoelastic Taylor-Couette instability. J. Non-Newt. Fluid 69: pp. 221-237 CrossRef
    5. Baumert, B.M., Muller, S.J. (1995) Flow visualization of the elastic Taylor-Couette instability in Boger fluids. Rheol. Acta 34: pp. 147-159 CrossRef
    6. Baumert, B.M., Muller, S.J. (1997) Flow regimes in model viscoelastic fluids in a circular couette system with independently rotating cylinders. Phys. Fluids 9: pp. 566-586 CrossRef
    7. Baumert, B.M., Muller, S.J. (1999) Axisymmetric and non-axisymmetric elastic and inertio-elastic instabilities in Taylor-Couette flow. J. Non-Newt. Fluid 83: pp. 33-69 CrossRef
    8. Beard, D., Davies, M., Walters, K. (1966) The stability of elastico-viscous flow between rotating cylinders Part 3. Overstability in viscous and Maxwell fluids. J. Fluid. Mech. 24: pp. 321-334 CrossRef
    9. Bird, R.B., Armstrong, R.C., Hassager, O. (1987) Dynamics of Polymeric Liquids, fluid dynamics. Wiley, New York
    10. Bird, R.B., Wiest, J.M. (1995) Constitutive equations for polymeric liquids. Annu. Rev. Fluid Mech. 27: pp. 169-193 CrossRef
    11. Bronshtein, I., Semendyaev, K. (1980) Handbook of mathematics. Moscow, Nauka
    12. Caton, F. (2006) Linear stability of circular Couette flow of inelastic viscoplastic fluids. J. Non-Newt. Fluid 134: pp. 148-154 CrossRef
    13. Chorin, A.J. (1967) A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2: pp. 12-26 CrossRef
    14. Chossat, P., Iooss, G. (1994) The Couette-Taylor problem. CrossRef
    15. Coronado-Matutti, O., Mendes, P.S., Carvalho, M. (2004) Instability of inelastic shear-thinning liquid in a Couette flow between concentric cylinder. J. Fluid. Eng-T ASME 126: pp. 385-390 CrossRef
    16. Couette, M.F.A. (1890) Etudes sur le frottement des liquides.
    17. Cruz, D., Pinho, F. (2004) Skewed Poiseuille-Couette flows of SPTT fluids in concentric annuli and channels. J. Non-Newt. Fluid 121: pp. 1-14 CrossRef
    18. Dumont, E., Fayolle, F., Sobol铆k, V., Legrand, J. (2002) Wall shear rate in Taylor-Couette-Poiseuille flow at low axial Reynolds number. Int. J. Heat. Mass. Tran. 45: pp. 679-689 CrossRef
    19. Ginn, R., Denn, M. (1969) Rotational stability in viscoelastic liquids: Theory. AIChE J. 15: pp. 450-454 CrossRef
    20. Hoffmann, K.A. (1989) Computational fluid dynamics for engineers. EES, Texas
    21. Huang, X., Phan-Thien, N., Tanner, R. (1996) Viscoelastic flow between eccentric rotating cylinders: unstructured control volume method. J. Non-Newt. Fluid 64: pp. 71-92 CrossRef
    22. Jeng, J., Zhu, K.Q. (2010) Numerical simulation of Taylor Couette flow of Bingham fluids. J. Non-Newt Fluid 165: pp. 1161-1170 CrossRef
    23. Kupferman, R. (1998) Simulation of viscoelastic fluids: Couette-Taylor flow. J. Comput. Phys. 147: pp. 22-59 CrossRef
    24. Larson, R. (1989) Taylor-Couette stability analysis for a Doi-Edwards fluid. Rheol. Acta 28: pp. 504-510 CrossRef
    25. Larson, R. (1992) Instabilities in viscoelastic flows. Rheol. Acta 31: pp. 213-263 CrossRef
    26. Larson, R., Muller, S., Shaqfeh, E. (1990) A purely elastic instability in Taylor-Couette flow. J. Fluid. Mech. 218: pp. 573-800 CrossRef
    27. Larson, R., Muller, S., Shaqfeh, E. (1994) The effect of fluid rheology on the elastic Taylor-Couette instability. J. Non-Newt. Fluid 51: pp. 195-225 CrossRef
    28. Lockett, T., Richardson, S., Worraker, W. (1992) The stability of inelastic non-Newtonian fluids in Couette flow between concentric cylinders: a finite-element study. J. Non-Newt. Fluid 43: pp. 165-177 CrossRef
    29. Muller, S., Shaqfeh, E., Worraker, W. (1993) Experimental studies of the onset of oscillatory instability in viscoelastic Taylor-Couette flow. J. Non-Newt Fluid 46: pp. 315-330 CrossRef
    30. Northey, P.J., Armstrong, R.C., Brown, R.A. (1992) Finite-amplitude time-periodic states in viscoelastic Taylor-Couette flow described by the UCM model. J. Non-Newt. Fluid 42: pp. 117-139 CrossRef
    31. Norouzi, M., Kayhanm, M.H., Nobari, M.R.H., Demneh, M.K. (2009) Convective heat transfer of viscoelastic flow in a curved duct. World Acad. Sci. Eng. Technol. 56: pp. 327-333
    32. Norouzi, M., Kayhani, M.H., Shu, C., Nobari, M.R.H. (2010) Flow of second-order fluid in a curved duct with square crosssection. J. Non-Newt. Fluid 165: pp. 323-329 CrossRef
    33. Norouzi, M., Nobari, M.R.H., Kayhani, M.H., Talebi, F. (2012) Instability investigation of creeping viscoelastic flow in a curved duct with rectangular cross-section. Int. J. Non-Linear Mech. 47: pp. 14-25 CrossRef
    34. Poncet, S., Haddadi, S., Viazzo, S. (2011) Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system. Int. J. Heat. Fluid. Fl. 32: pp. 128-144 CrossRef
    35. Qi, H., Jin, H. (2006) Unsteady rotating flows of a viscoelastic fluid with the fractional Maxwell model between coaxial cylinders. Acta. Mech. Sinica 22: pp. 301-305 CrossRef
    36. Ravanchi, M.T., Mirzazadeh, M., Rashidi, F. (2007) Flow of Giesekus viscoelastic fluid in a concentric annulus with inner cylinder rotation. Int. J. Heat. Fluid. Fl. 28: pp. 838-845 CrossRef
    37. Renardy, M., Renardy, Y., Sureshkumar, R., Beris, A. (1996) Hopf-Hopf and steady-Hopf mode interactions in Taylor-Couette flow of an upper convected Maxwell liquid. J. Non-Newt. Fluid 63: pp. 1-31 CrossRef
    38. Rossi, L.F., McKinley, G., Cook, L.P. (2006) Slippage and migration in Taylor-Couette flow of a model for dilute wormlike micellar solutions. J. Non-Newt. Fluid 136: pp. 79-92 CrossRef
    39. Tagg, R. (1994) The Couette-Taylor problem. Nonlinear Sci. Today 4: pp. 1-25 CrossRef
    40. Tanner, R.I. (2000) Engineering rheology. Oxford University Press, Melbourne
    41. Taylor, G.I. (1923) Stability of a viscous liquid contained between two rotating cylinders. Philos. T. Roy. Soc. A.. pp. 289-343
    42. Thomas, D., Al-Mubaiyedh, U., Sureshkumar, R., Khomami, B. (2006) Time-dependent simulations of non-axisymmetric patterns in Taylor-Couette flow of dilute polymer solutions. J. Non-Newt. Fluid 138: pp. 111-133 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Mechanical Engineering
    Polymer Sciences
    Characterization and Evaluation of Materials
    Soft and Granular Matter, Complex Fluids and Microfluidics
    Food Sciences
  • 出版者:The Korean Society of Rheology and Australian Society of Rheology, co-published with Springer
  • ISSN:2093-7660
文摘
In this paper, the effect of normal stress differences on the viscoelastic Taylor-Couette instability is studied numerically. The governing equations are discretized using FTCS finite difference method on a staggered mesh based on the artificial compressibility algorithm. Using the CEF model as the constitutive equation and the Carreau-Yasuda model as the viscometric functions, the flow between rotating cylinders has been studied for a range of radius ratios, Taylor numbers and rheological properties. It is shown that increasing the first normal stress difference destabilizes the flow field while increasing the negative second normal stress difference stabilizes the flow field. The main contribution of the current study is an answer to this question: How do the first and second normal stress differences affect the stability of viscoelastic flow between rotating cylinders? For this reason, we used the order of magnitude technique to obtain a force balance relation in the core region of flow. Based on this relation and numerical simulation, the origin of viscoelastic Taylor-Couette instability resulted from normal stress differences are studied in detail. Furthermore, a two dimensional analytical solution for the main flow velocity component between finite rotating cylinders is carried out considering the end effect of stationary walls.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700