Assessing the stability of soil organic matter by fractionation and 13C isotope techniques
详细信息    查看全文
  • 作者:A. A. Larionova (1)
    B. N. Zolotareva (1)
    A. K. Kvitkina (1)
    I. V. Evdokimov (1)
    S. S. Bykhovets (1)
    A. F. Stulin (2)
    Ya. V. Kuzyakov (3)
    V. N. Kudeyarov (1)

    1. Institute of Physicochemical and Biological Problems of Soil Science
    ; Russian Academy of Sciences ; ul. Institutskaya 2 ; Pushchino ; Moscow oblast ; 142290 ; Russia
    2. Voronezh Branch of the All-Russian Research Institute of Corn
    ; Russian Academy of Agricultural Sciences ; ul. Chayanova 13 ; VNIIK ; Khokhol district ; Voronezh oblast ; 396835 ; Russia
    3. Institute of Soil Science of Temperate Ecosystems
    ; Georg-August University G枚ttingen ; G枚ttingen ; Germany
  • 关键词:labile and stable pools labile and stable pools of soil organic matter ; C3 ; C4 transition ; particlesize and density fractionation ; nonhydrolyzable organic matter ; CO2 emission from the soil
  • 刊名:Eurasian Soil Science
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:48
  • 期:2
  • 页码:157-168
  • 全文大小:278 KB
  • 参考文献:1. Z. S. Artem鈥檈va, / Organic Matter and Granulometric System of Soil (GEOS, Moscow, 2010) [in Russian].
    2. A. F. Vadyunina and Z. A. Korchagina, / Methods for Studying Soil Physical Properties (Vysshaya Shkola, Moscow, 1973) [in Russian].
    3. A. Ya. Vanyushina and L. S. Travnikova, 鈥淥rganicmineral interactions in soils: a review,鈥?Eurasian Soil Sci. 36(4), 379鈥?87 (2003).
    4. V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, A. V. Borisov, P. Yu. Voronin, V. A. Demkin, T. S. Demkina, I. V. Yevdokimov, D. G. Zamolodchikov, D. V. Karelin, A. S. Komarov, I. N. Kurganova, A. A. Larionova, V. O. Lopes de Gerenu, A. I. Utkin, and O. G. Chertov, / Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia (Nauka, Moscow, 2007) [in Russian].
    5. A. A. Larionova, B. N. Zolotareva, I. V. Yevdokimov, S. S. Bykhovets, Y. V. Kuzyakov, and F. Buegger, 鈥淚dentification of labile and stable pools of organic matter in an agrogray soil,鈥?Eurasian Soil Sci. 44(6), 628鈥?40 (2011). CrossRef
    6. A. A. Larionova, B. N. Zolotareva, V. N. Kudeyarov, and Y. G. Kolyagin, 鈥淭ransformation of the organic matter in an agrogray soil and an agrochernozem in the course of the humification of corn biomass,鈥?Eurasian Soil Sci. 46(8), 854鈥?61 (2013). CrossRef
    7. A. A. Larionova, A. K. Kvitkina, I. V. Yevdokimov, S. S. Bykhovets, and A. F. Stulin, 鈥淓ffect of temperature on the decomposition rate of labile and stable organic matter in an agrochernozem,鈥?Eurasian Soil Sci. 47(5), 416鈥?24 (2014). CrossRef
    8. A. A. Larionova, O. G. Zanina, I. V. Yevdokimov, O. S. Khokhlova, V. N. Kudeyarov, A. F. Stulin, F. Buegger, and M. Schloter, 鈥淒istribution of stable carbon isotopes in an agrochernozem during the transition from C3 vegetation to a corn monoculture,鈥?Eurasian Soil Sci. 45(8), 768鈥?78 (2012). CrossRef
    9. D. S. Orlov, / Soil Chemistry (Mosk. Gos. Univ., Moscow, 1985) [in Russian].
    10. D. S. Orlov and O. N. Biryukova, 鈥淭he stability of soil organic compounds and the emission of greenhouse gases into the atmosphere,鈥?Eurasian Soil Sci. 31(7), 711鈥?20 (1998).
    11. D. S. Orlov and L. A. Grishina, / Practicum on Humus Chemistry (Mosk. Gos. Univ., Moscow, 1981) [in Russian].
    12. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, and A. S. Tulina, 鈥淢ineralization of organic matter and the carbon sequestration capacity of zonal soils,鈥?Eurasian Soil Sci. 41(7), 717鈥?30 (2008). CrossRef
    13. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, and A. K. Khodzhaeva, 鈥淏iokinetic indication of the mineralizable pool of soil organic matter,鈥?Eurasian Soil Sci. 40(11), 1208鈥?216 (2007). CrossRef
    14. O. A. Chichagova, A. L. Alexandrovsky, S. V. Goryachkin, and I. V. Kovda, 鈥淩adiocarbon studies as the basis for evaluating carbon fluxes in the soil-atmosphere system,鈥?Izv. Ross. Akad. Nauk, Ser. Geogr., No. 4, 107鈥?12 (2001).
    15. S. Crow, C. Swantson, K. Lajtha, J. Brooks, and H. Keirstead, 鈥淒ensity fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context,鈥?Biogeochemistry 85, 69鈥?0 (2007). CrossRef
    16. S. Haile-Mariam, H. P. Collins, S. Wright, and E. A. Paul, 鈥淔ractionation and long-term laboratory incubation to measure soil organic matter dynamics,鈥?Soil Sci. Soc. Am. J. 72, 370鈥?78 (2008). CrossRef
    17. H. Flessa, W. Amelung, M. Helfrich, G. L. B. Wiesenberg, G. Gleixner, S. Brodowski, J. Rethemeyer, C. Kramer, and P. Grootes, 鈥淪torage and stability of organic matter and fossil carbon in Luvisol and Phaeozem with continuous maize cropping: a synthesis,鈥?J. Plant Nutr. Soil Sci. 171, 36鈥?1 (2008). CrossRef
    18. A. A. Larionova, I. V. Yevdokimov, and S. S. Bykhovets, 鈥淭emperature sensitivity of soil respiration is dependent on readily decomposable C substrate concentration,鈥?Biogeosciences 4, 1073鈥?081 (2007). CrossRef
    19. M. Lucash, R. Simmons, M. Johnson, C. Catricala, and M. Monte, / Standard Operating Procedure for the Physical Fractionation Procedure to Determine Soil Organic Matter Quality (Environmental Protection Agency, 2003).
    20. M. L眉tzow, I. Kogel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner, 鈥淪OM fractionation methods: relevance to functional pools and to stabilization mechanisms,鈥?Soil Biol. Biochem. 39, 2183鈥?207 (2007). CrossRef
    21. E. Paul, S. J. Morris, R. T. Conant, and A. F. Plante, 鈥淒oes the acid hydrolysis-incubation method measure meaningful soil organic carbon pools,鈥?Soil Sci. Soc. Am. J. 70, 1023鈥?035 (2006). CrossRef
    22. C. Schadel, Y. Luo, D. Evans, Sh. Fei, and S. M. Schaeffer, 鈥淪eparating soil CO2 efflux into C-pool specific decay rates via inverse analysis of soil incubation data,鈥?Oecologia 171, 721鈥?32 (2013). CrossRef
    23. S. Trumbore, 鈥淧otential responses of soil organic carbon to global environmental change,鈥?Proc. Natl. Acad. Sci. U.S.A. 94, 8284鈥?291 (1997). CrossRef
    24. M. Zimmermann, J. Leifeld, M. W. I. Schmidt, P. Smith, and J. Fuehrer, 鈥淢easured soil organic matter fractions can be related to pools in RothC model,鈥?Eur. J. Soil Sci. 58, 658鈥?67 (2007). CrossRef
  • 刊物主题:Geotechnical Engineering & Applied Earth Sciences;
  • 出版者:Springer US
  • ISSN:1556-195X
文摘
Carbon pools of different stabilities have been separated from the soil organic matter of agrochernozem and agrogray soil samples. The work has been based on the studies of the natural abundance of the carbon isotope composition by C3-C4 transition using the biokinetic, size-density, and chemical fractionation (6 M HCl hydrolysis) methods. The most stable pools with the minimum content of new carbon have been identified by particle-size and chemical fractionation. The content of carbon in the fine fractions has been found to be close to that in the nonhydrolyzable residue. This pool makes up 65 and 48% of Corg in the agrochernozems and agrogray soils, respectively. The combination of the biokinetic approach with particle-size fractionation or 6 M HCl hydrolysis has allowed assessing the size of the medium-stable organic carbon pool with a turnover time of several years to several decades. The organic matter pool with this turnover rate is usually identified from the variation in the 13C abundance by C3-C4 transition. In the agrochernozems and agrogray soils, the medium-stable carbon pool makes up 35 and 46% of Corg, respectively. The isotope indication may be replaced by a nonisotope method to significantly expand the study of the inert and mediumstable organic matter pools in the geographical aspect, but this requires a comparative analysis of particle-size and chemical fractionation data for all Russian soils.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700