The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species
详细信息    查看全文
  • 作者:Ha X Dang (1) (4)
    Barry Pryor (2)
    Tobin Peever (3)
    Christopher B Lawrence (1) (3)

    1. Department of Biological Sciences
    ; Virginia Tech ; Blacksburg ; Virginia ; 24061 ; USA
    4. Current address
    ; Department of Internal Medicine ; Division of Oncology ; and The Genome Institute ; Washington University School of Medicine ; St. Louis ; MO ; 63110 ; USA
    2. Department of Plant Sciences
    ; University of Arizona ; Tucson ; Arizona ; 85721 ; USA
    3. Department of Plant Pathology
    ; Washington State University ; Pullman ; Washington ; 99164 ; USA
  • 关键词:Database ; Alternaria ; Fungal genome ; Sequence ; Annotation ; Comparative genomics ; Plant pathogen ; Allergy ; Saprophyte
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:3,253 KB
  • 参考文献:1. Neergaard P. Danish species of Alternaria and Stemphylium. 1945:560 pp.
    2. Sigareva, MA, Earle, ED (1999) Camalexin induction in intertribal somatic hybrids between Camelina sativa and rapid-cycling Brassica oleracea. Theor Appl Genet 98: pp. 164-70 CrossRef
    3. Westman, AL, Kresovich, S, Dickson, MH (1999) Regional variation in Brassica nigra and other weedy crucifers for disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris. Euphytica 106: pp. 253-9 44025146" target="_blank" title="It opens in new window">CrossRef
    4. Daebeler FD, Riedel A, Riedel V. Wiss Z Wilhelm Pieck-Univ Rostock Naturwissenschaftliche Reiche. 1986;35:52.
    5. MacKinnon, SL, Keifer, P, Ayer, WA (1999) Components from the phytotoxic extract of Alternaria brassicicola, a black spot pathogen of canola. Phytochemistry 51: pp. 215-21 422(98)00732-8" target="_blank" title="It opens in new window">CrossRef
    6. Pedras, MSC, Chumala, PB, Jin, W, Islam, MS, Hauck, DW (2009) The phytopathogenic fungus Alternaria brassicicola: Phytotoxin production and phytoalexin elicitation. Phytochemistry 70: pp. 394-402 CrossRef
    7. Chaerani, R, Voorrips, RE (2006) Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance. J Gen Plant Pathol 72: pp. 335-47 CrossRef
    8. Olanya, OM, Honeycutt, CW, Larkin, RP, Griffin, TS, He, Z, Halloran, JM (2009) The effect of cropping systems and irrigation management on development of potato early blight. J Gen Plant Pathol 75: pp. 267-75 CrossRef
    9. Montemurro N, Visconti A. Alternaria metabolites-chemical and biological data. Alternaria Biol Plant Dis Metab. 1992:449-57.
    10. Liu GT, Qian YZ, Zhang P, Dong ZM, Shi ZY, Zhen YZ, et al. Relationships between Alternaria alternata and oesophageal cancer. IARC Sci Publ. 1991:258-62.
    11. Bottalico, A, Logrieco, A (1998) Toxigenic Alternaria species of economic importance. Mycotoxins Agric Food Saf 65: pp. 108
    12. Kwon, HJ, Owa, T, Hassig, CA, Shimada, J, Schreiber, SL (1998) Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc Natl Acad Sci U S A 95: pp. 3356-61 CrossRef
    13. Saha, D, Fetzner, R, Burkhardt, B, Podlech, J, Metzler, M, Dang, H (2012) Identification of a Polyketide Synthase Required for Alternariol (AOH) and Alternariol-9-Methyl Ether (AME) Formation in Alternaria alternata. PLoS One 7: pp. e40564 40564" target="_blank" title="It opens in new window">CrossRef
    14. Wight, WD, Kim, K-H, Lawrence, CB, Walton, JD (2009) Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. Mol Plant Microbe Interact 22: pp. 1258-67 4/MPMI-22-10-1258" target="_blank" title="It opens in new window">CrossRef
    15. Gergen, PJ, Turkeltaub, PC (1992) The association of individual allergen reactivity with respiratory disease in a national sample: Data from the second National Health and Nutrition Examination Survey, 1976鈥?980 (NHANES II). J Allergy Clin Immunol 90: pp. 579-88 49(92)90130-T" target="_blank" title="It opens in new window">CrossRef
    16. Halonen, M, Stern, DA, Wright, AL, Taussig, LM, Martinez, FD (1997) Alternaria as a major allergen for asthma in children raised in a desert environment. Am J Respir Crit Care Med 155: pp. 1356-61 4/ajrccm.155.4.9105079" target="_blank" title="It opens in new window">CrossRef
    17. Salo, PM, Arbes, SJ, Sever, M, Jaramillo, R, Cohn, RD, London, SJ (2006) Exposure to Alternaria alternata in US homes is associated with asthma symptoms. J Allergy Clin Immunol 118: pp. 892-8 CrossRef
    18. O鈥橦ollaren, MT, Yunginger, JW, Offord, KP, Somers, MJ, O鈥機onnell, EJ, Ballard, DJ (1991) Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young patients with asthma. N Engl J Med 324: pp. 359-63 40602" target="_blank" title="It opens in new window">CrossRef
    19. Andersson, M, Downs, S, Mitakakis, T, Leuppi, J, Marks, G (2003) Natural exposure to Alternaria spores induces allergic rhinitis symptoms in sensitized children. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol 14: pp. 100-5 4/j.1399-3038.2003.00031.x" target="_blank" title="It opens in new window">CrossRef
    20. Bush, RK, Prochnau, JJ (2004) Alternaria-induced asthma. J Allergy Clin Immunol 113: pp. 227-34 CrossRef
    21. Huang, X, Wang, J, Aluru, S, Yang, S-P, Hillier, L (2003) PCAP: a whole-genome assembly program. Genome Res 13: pp. 2164-70 403" target="_blank" title="It opens in new window">CrossRef
    22. Margulies, M, Egholm, M, Altman, WE, Attiya, S, Bader, JS, Bemben, LA (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: pp. 376-80
    23. Zerbino, DR, Birney, E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: pp. 821-9 4492.107" target="_blank" title="It opens in new window">CrossRef
    24. Flutre, T, Duprat, E, Feuillet, C, Quesneville, H (2011) Considering transposable element diversification in de novo annotation approaches. PLoS One 6: pp. e16526 CrossRef
    25. Price, AL, Jones, NC, Pevzner, PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21: pp. i351-8 CrossRef
    26. Allen, JE, Salzberg, SL (2005) JIGSAW: integration of multiple sources of evidence for gene prediction. Bioinformatics 21: pp. 3596-603 CrossRef
    27. Birney, E, Clamp, M, Durbin, R (2004) GeneWise and Genomewise. Genome Res 14: pp. 988-95 4" target="_blank" title="It opens in new window">CrossRef
    28. Stanke, M, Waack, S (2003) Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19: pp. ii215-25 CrossRef
    29. Ter-Hovhannisyan, V, Lomsadze, A, Chernoff, YO, Borodovsky, M (2008) Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18: pp. 1979-90 CrossRef
    30. Blanco E, Parra G, Guig贸 R. Using geneid to identify genes. Curr Protoc Bioinforma Ed Board Andreas Baxevanis Al. 2007;Chapter 4:Unit 4.3.
    31. Trapnell, C, Pachter, L, Salzberg, SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinforma Oxf Engl 25: pp. 1105-11 CrossRef
    32. Langmead, B, Trapnell, C, Pop, M, Salzberg, SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: pp. R25 CrossRef
    33. Roberts, A, Pimentel, H, Trapnell, C, Pachter, L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27: pp. 2325-9 CrossRef
    34. Lowe, TM, Eddy, SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: pp. 955-64 CrossRef
    35. Lagesen, K, Hallin, P, R酶dland, EA, Staerfeldt, H-H, Rognes, T, Ussery, DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35: pp. 3100-8 CrossRef
    36. Benson, DA, Clark, K, Karsch-Mizrachi, I, Lipman, DJ, Ostell, J, Sayers, EW (2013) GenBank. Nucleic Acids Res 42: pp. D32-7 CrossRef
    37. Consortium, UP (2013) Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 41: pp. D43-7 CrossRef
    38. Haas, BJ, Zeng, Q, Pearson, MD, Cuomo, CA, Wortman, JR (2011) Approaches to fungal genome annotation. Mycology 2: pp. 118-41
    39. Hunter, S, Jones, P, Mitchell, A, Apweiler, R, Attwood, TK, Bateman, A (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40: pp. D306-12 48" target="_blank" title="It opens in new window">CrossRef
    40. Finn, RD, Bateman, A, Clements, J, Coggill, P, Eberhardt, RY, Eddy, SR (2013) Pfam: the protein families database. Nucleic Acids Res 42: pp. D222-30 CrossRef
    41. G枚tz, S, Garc铆a-G贸mez, JM, Terol, J, Williams, TD, Nagaraj, SH, Nueda, MJ (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36: pp. 3420-35 CrossRef
    42. Bendtsen, JD, Nielsen, H, Heijne, G, Brunak, S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: pp. 783-95 4.05.028" target="_blank" title="It opens in new window">CrossRef
    43. Horton, P, Park, K-J, Obayashi, T, Fujita, N, Harada, H, Adams-Collier, CJ (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35: pp. W585-7 CrossRef
    44. K盲ll, L, Krogh, A, Sonnhammer, ELL (2007) Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res 35: pp. W429-32 CrossRef
    45. Krogh, A, Larsson, B, Heijne, G, Sonnhammer, ELL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305: pp. 567-80 4315" target="_blank" title="It opens in new window">CrossRef
    46. Winnenburg, R, Urban, M, Beacham, A, Baldwin, TK, Holland, S, Lindeberg, M (2008) PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Res 36: pp. D572-6
    47. Cantarel, BL, Coutinho, PM, Rancurel, C, Bernard, T, Lombard, V, Henrissat, B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37: pp. D233-8 CrossRef
    48. Yin, Y, Mao, X, Yang, J, Chen, X, Mao, F, Xu, Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40: pp. W445-51 479" target="_blank" title="It opens in new window">CrossRef
    49. Dang HX, Lawrence CB. Allerdictor: fast allergen prediction using text classification techniques. Bioinforma Oxf Engl. 2014.
    50. Rawlings, ND, Barrett, AJ, Bateman, A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40: pp. D343-50 CrossRef
    51. Khaldi, N, Seifuddin, FT, Turner, G, Haft, D, Nierman, WC, Wolfe, KH (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol FG B 47: pp. 736-41 CrossRef
    52. Darling, ACE, Mau, B, Blattner, FR, Perna, NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14: pp. 1394-403 4" target="_blank" title="It opens in new window">CrossRef
    53. Darling, AE, Mau, B, Perna, NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5: pp. e11147 47" target="_blank" title="It opens in new window">CrossRef
    54. Li, L, Stoeckert, CJ, Roos, DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13: pp. 2178-89 4503" target="_blank" title="It opens in new window">CrossRef
    55. Flicek, P, Amode, MR, Barrell, D, Beal, K, Brent, S, Carvalho-Silva, D (2011) Ensembl 2012. Nucleic Acids Res 40: pp. D84-90 CrossRef
    56. Nierman, WC, Pain, A, Anderson, MJ, Wortman, JR, Kim, HS, Arroyo, J (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: pp. 1151-6 4332" target="_blank" title="It opens in new window">CrossRef
    57. Hane, JK, Lowe, RGT, Solomon, PS, Tan, K-C, Schoch, CL, Spatafora, JW (2007) Dothideomycete鈥損lant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen stagonospora nodorum. Plant Cell Online 19: pp. 3347-68 CrossRef
    58. Mabey Gilsenan, J, Cooley, J, Bowyer, P (2012) CADRE: the Central Aspergillus Data REpository 2012. Nucleic Acids Res 40: pp. D660-6 CrossRef
    59. Cerqueira, GC, Arnaud, MB, Inglis, DO, Skrzypek, MS, Binkley, G, Simison, M (2013) The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 42: pp. D705-10 CrossRef
    60. Cho, Y, Davis, JW, Kim, K-H, Wang, J, Sun, Q-H, Cramer, RA (2006) A high throughput targeted gene disruption method for Alternaria brassicicola functional genomics using linear minimal element (LME) constructs. Mol Plant-Microbe Interact MPMI 19: pp. 7-15 4/MPMI-19-0007" target="_blank" title="It opens in new window">CrossRef
    61. Kim, K-H, Cho, Y, LA Rota, M, Cramer, RA, Lawrence, CB (2007) Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall construction. Mol Plant Pathol 8: pp. 23-39 4-3703.2006.00366.x" target="_blank" title="It opens in new window">CrossRef
    62. Cho, Y, Cramer, RA, Kim, K-H, Davis, J, Mitchell, TK, Figuli, P (2007) The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet Biol 44: pp. 543-53 CrossRef
    63. Craven, KD, V茅l毛z, H, Cho, Y, Lawrence, CB, Mitchell, TK (2008) Anastomosis is required for virulence of the fungal necrotroph Alternaria brassicicola. Eukaryot Cell 7: pp. 675-83 423-07" target="_blank" title="It opens in new window">CrossRef
    64. Cho, Y, Kim, K-H, Rota, M, Scott, D, Santopietro, G, Callihan, M (2009) Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Mol Microbiol 72: pp. 1316-33 CrossRef
    65. Kim, K-H, Willger, SD, Park, S-W, Puttikamonkul, S, Grahl, N, Cho, Y (2009) TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen. PLoS Pathog 5: pp. e1000653 CrossRef
    66. Cho, Y, Srivastava, A, Ohm, RA, Lawrence, CB, Wang, K-H, Grigoriev, IV (2012) Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola. PLoS Pathog 8: pp. e1002974 4" target="_blank" title="It opens in new window">CrossRef
    67. Srivastava, A, Ohm, RA, Oxiles, L, Brooks, F, Lawrence, CB, Grigoriev, IV (2012) A zinc-finger-family transcription factor, AbVf19, is required for the induction of a gene subset important for virulence in Alternaria brassicicola. Mol Plant-Microbe Interact MPMI 25: pp. 443-52 4/MPMI-10-11-0275" target="_blank" title="It opens in new window">CrossRef
    68. Srivastava, A, Cho, IK, Cho, Y (2013) The Bdtf1 gene in Alternaria brassicicola is important in detoxifying brassinin and maintaining virulence on Brassica species. Mol Plant-Microbe Interact MPMI 26: pp. 1429-40 4/MPMI-07-13-0186-R" target="_blank" title="It opens in new window">CrossRef
    69. Hu, J, Chen, C, Peever, T, Dang, H, Lawrence, C, Mitchell, T (2012) Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics 13: pp. 171 471-2164-13-171" target="_blank" title="It opens in new window">CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Alternaria is considered one of the most common saprophytic fungal genera on the planet. It is comprised of many species that exhibit a necrotrophic phytopathogenic lifestyle. Several species are clinically associated with allergic respiratory disorders although rarely found to cause invasive infections in humans. Finally, Alternaria spp. are among the most well known producers of diverse fungal secondary metabolites, especially toxins. Description We have recently sequenced and annotated the genomes of 25 Alternaria spp. including but not limited to many necrotrophic plant pathogens such as A. brassicicola (a pathogen of Brassicaceous crops like cabbage and canola) and A. solani (a major pathogen of Solanaceous plants like potato and tomato), and several saprophytes that cause allergy in human such as A. alternata isolates. These genomes were annotated and compared. Multiple genetic differences were found in the context of plant and human pathogenicity, notably the pro-inflammatory potential of A. alternata. The Alternaria genomes database was built to provide a public platform to access the whole genome sequences, genome annotations, and comparative genomics data of these species. Genome annotation and comparison were performed using a pipeline that integrated multiple computational and comparative genomics tools. Alternaria genome sequences together with their annotation and comparison data were ported to Ensembl database schemas using a self-developed tool (EnsImport). Collectively, data are currently hosted using a customized installation of the Ensembl genome browser platform. Conclusion Recent efforts in fungal genome sequencing have facilitated the studies of the molecular basis of fungal pathogenicity as a whole system. The Alternaria genomes database provides a comprehensive resource of genomics and comparative data of an important saprophytic and plant/human pathogenic fungal genus. The database will be updated regularly with new genomes when they become available. The Alternaria genomes database is freely available for non-profit use at http://alternaria.vbi.vt.edu.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700