Phenotype and animal domestication: A study of dental variation between domestic, wild, captive, hybrid and insular Sus scrofa
详细信息    查看全文
  • 作者:Allowen Evin (1) (2)
    Keith Dobney (1)
    Renate Schafberg (3)
    Joseph Owen (1) (4) (5)
    Una Strand Vidarsdottir (5)
    Greger Larson (6)
    Thomas Cucchi (1) (2)

    1. Department of Archaeology
    ; University of Aberdeen ; St. Mary鈥檚 Building ; Elphinstone Road ; Aberdeen ; UK
    2. CNRS-Mus茅um National d鈥橦istoire Naturelle
    ; UMR 7209 ; Arch茅ozoologie ; Arch茅obotanique ; Soci茅t茅s ; Pratiques et Environnement ; 55 rue Buffon ; 75005 ; Paris ; France
    3. Group Animal Breeding
    ; Institute of Agricultural and Nutritional Sciences (IANS) ; Martin-Luther-University Halle-Wittenberg ; Theodor-Lieser-Str ; 11 D-06120 ; Halle/Saale ; Germany
    4. Department of Archaeology
    ; Simon Fraser University ; Education Bulding 9635 ; 8888 University Dr ; Burnaby ; BC ; V5A ; Canada
    5. Department of Anthropology
    ; Durham University ; South Road ; Durham ; DH1 3LE ; UK
    6. Durham Evolution and Ancient DNA
    ; Department of Archaeology ; Durham University ; South Road ; Durham ; DH1 3LE ; UK
  • 关键词:Teeth ; Molars ; Geometric morphometrics ; Biogeography ; Artificial selection ; Natural selection
  • 刊名:BMC Evolutionary Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 全文大小:748 KB
  • 参考文献:1. Bartley MM. Darwin and domestication: Studies on inheritance. J Hist Biol. 1992;25:307鈥?3. CrossRef
    2. Darwin C. The Variation of Animals and Plants under Domestication. London: Murray, John; 1868.
    3. Larson G, Cucchi T, Fujita M, Matisoo-Smith E, Robins J, Anderson A, et al. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proc Natl Acad Sci U S A. 2007;104:4834鈥?. CrossRef
    4. Rubin C-J, Megens H-J, Barrio MA, Maqbool K, Sayyab S, Schwochow D, et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci U S A. 2012;109:19529鈥?6. CrossRef
    5. Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 2012;491:393鈥?. CrossRef
    6. Albarella U, Dobney K, Rowley-Conwy P. Size and shape of the Eurasian wild boar ( / Sus scrofa), with a view to the reconstruction of its Holocene history. Environ Archaeol. 2009;14:103鈥?6. CrossRef
    7. Vigne J. The origins of animal domestication and husbandry : A major change in the history of humanity and the biosphere. C R Biol. 2011;334:171鈥?1. CrossRef
    8. Mayer JJ, Brisbin IL. Wild Pigs in the United States: Their History, Comparative Morphology, and Current Status. Athens and london: University of Georgia Press; 1991.
    9. Price EO. Animal Domestication and Behavior. Wallingford, New York: CABI Publishing; 2002. CrossRef
    10. Rowley-Conwy P, Albarella U, Dobney K. Distinguishing Wild Boar from Domestic Pigs in Prehistory: A Review of Approaches and Recent Results. J World Prehistory. 2012;25:1鈥?4. CrossRef
    11. Groves CP. Ancestors for the Pigs: Taxonomy and Phylogeny of the Genus Sus. Canberra, Australia: Australian National University; 1981.
    12. Groves CP. Current views on taxonomy and zoogeography of the genus Sus. In: Albarella U, Dobney K, Rowley-Conwy P, editors. Pigs and Humans: 10,000 years of interaction. Oxford: Oxford University Press; 2007. p. 15鈥?9.
    13. O鈥橰egan HJ, Kitchener AC. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mamm Rev. 2005;35:215鈥?0. CrossRef
    14. Porter V. Mason鈥檚 World Dictionnary of Liverstock Breeds, Types and Varieties. 5th ed. Wallingford, UK: CABI Publishing; 2002.
    15. Porter V. Pigs, A Handbook to the Breeds of the World. East Sussex, UK: Helm Information Ltd; 1993.
    16. McDade L. Hybrids and phylogenetic systematics I. Patterns of character expression in hybrids and their implications for cladistic analysis. Evolution. 1990;44:1685鈥?00. CrossRef
    17. Rieseberg LH, Ellstrand NC, Arnold M. What Can Molecular and Morphological Markers Tell Us About Plant Hybridization? CRC Crit Rev Plant Sci. 1993;12:213鈥?1.
    18. Randi E, Apollonio M, Toso S. The systematics of some italian populations of wild boar (Sus scrofa L.): a craniometric and electrophoretic analysis. Zeitschrift f眉r S盲ugetierkd. 1989;54:40鈥?6.
    19. Apollonio M, Randi E, Toso S. The systematics of the wild boar ( / Sus scrofa L.) in Italy. Bolletino di Zool. 1988;55:213鈥?1. CrossRef
    20. Genov P, Nikolovg H, Massei G, Gerasimov S. Craniometrical analysis of Bulgarian wild boar ( Sus scrofa ) populations. J Zool. 1991;225:309鈥?5. CrossRef
    21. Scandura M, Iacolina L, Apollonio M. Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild x domestic hybridization. Mamm Rev. 2011;41:125鈥?7. CrossRef
    22. Larson G, Burger J. A population genetics view of animal domestication. Trends Genet. 2013;29:197鈥?05. CrossRef
    23. Marshall FB, Dobney K, Denham T, Capriles JM. Evaluating the roles of directed breeding and gene flow in animal domestication. Proc Natl Acad Sci. 2014;111:6153鈥?. CrossRef
    24. Long JL. Introduced Mammals of the World. Collingwood: CSIRO Publishing; 2003. p. 589.
    25. Vigne J-D. Les Mammif猫res Post-Glaciaires de Corse. Etude Arch茅ozoologique. Ed. du CNRS. Paris: XXVI掳 suppl茅ment 脿 鈥淕allia Pr茅histoire鈥? 1988.
    26. Vigne J-D. Zooarchaeology and the biogeographical history of the mammals of Corsica and Sardinia since the last ice age. Mamm Rev. 1992;22:87鈥?6. CrossRef
    27. Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science. 2005;307:1618鈥?1. CrossRef
    28. Albarella U, Manconi F, Rowley-Conwy P, Vigne J-D. Pigs of Corsica and Sardinia: a biometrical re-evaluation of their status and history. J Intercult Interdiscip Archaeol 2006;285鈥?02
    29. Foster JB. Evolution of Mammals on Islands. Nature. 1964;202:234鈥?. CrossRef
    30. Mayr E. The challenge of island faunas. Aust Nat Hist. 1967;15:359鈥?4.
    31. Vigne J-D, Peters J, Helmer D. The First Steps of Animal Domestication: New Archaeozoological Techniques (Proceedings of the 9th ICAZ Conference). Oxford: Oxbow Books Limited; 2005.
    32. Cucchi T, Hulme-Beaman A, Yuan J, Dobney K. Early Neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. J Archaeol Sci. 2011;38:11鈥?2. CrossRef
    33. Evin A, Cucchi T, Cardini A, Strand Vidarsdottir U, Larson G, Dobney K. The long and winding road: identifying pig domestication through molar size and shape. J Archaeol Sci. 2013;40:735鈥?3. CrossRef
    34. Seetah K, Cucchi T, Dobney K, Barker G. A geometric morphometric re-evaluation of the use of dental form to explore differences in horse ( Equus caballus ) populations and its potential zooarchaeological application. J Archaeol Sci. 2014;41:904鈥?0. CrossRef
    35. Owen J, Dobney K, Evin A, Cucchi T, Larson G, Strand Vidarsdottir U. The zooarchaeological application of quantifying cranial shape differences in wild boar and domestic pigs (Sus scrofa) using 3D geometric morphometrics. J Archaeol Sci. 2014;43:159鈥?7. CrossRef
    36. Cucchi T, Fujita M, Dobney K. New insights into pig taxonomy, domestication and human dispersal in Island South East Asia: molar shape analysis of Sus remains from Niah Caves, Sarawak. Int J Osteoarchaeol. 2009;19:508鈥?0. CrossRef
    37. Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, Russo V, et al. Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Mol Ecol. 2008;17:1745鈥?2. CrossRef
    38. Pond WG, Mersmann HJ. Biology of the Domestic Pig. Ithaca, New York: Cornell University Press; 2001.
    39. Vigne J-D. Faci猫s culturels et sous-syst猫me technique de l鈥檃cquisition des ressources animales. Application au N茅olithique ancien m茅diterran茅en. In: Rencontres M茅ridionales de Pr茅histoire r茅cente. Deuxi猫me session, Arles, 1996. Antibes: Editions APDCA; 1998. p. 27鈥?5.
    40. Rehfeldt C, Henning M, Fiedler I. Consequences of pig domestication for skeletal muscle growth and cellularity. Livest Sci. 2008;116:30鈥?1. CrossRef
    41. Clutton-Brock J. A Natural History of Domesticated Mammals. Cambridge: Cambridge University Press; 1988.
    42. Albarella U, Dobney K, Rowley-Conwy P. The domestication of the Pig (Sus scrofa): New Challenges and Approaches. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD, editors. Documenting domestication: new genetic and archaeological paradigms. Berkley: University of California Press; 2006. p. 209鈥?7.
    43. Dobney K, Cucchi T, Larson G. The Pigs of Island Southeast Asia and the Pacific: New Evidence for Taxonomic Status and Human-Mediated Dispersal. Asian Perspect. 2009;44:59鈥?4.
    44. Wayne RK. Cranial Morphology of Domestic and Wild Canids: The Influence of Development on Morphological Change. Evolution. 1986;40:243鈥?1. CrossRef
    45. Drake AG, Klingenberg CP. Large-Scale Diversification of Skull Shape in Domestic Dogs: Disparity and Modularity. Am Nat. 2010;175:289鈥?01. CrossRef
    46. Wilcox B, Walkowicz C. The Atlas of Dog Breeds of the World. 5th ed. Neptune City: T.F.H. Publications; 1995.
    47. Caumul R, Polly PD. Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution. 2005;59:2460鈥?2. CrossRef
    48. Ervynck A, Dobney K, Hongo H, Meadow R. Born Free? New Evidence for the Status of Sus scrofa at Neolithic 脟ay枚n眉 Tepesi (Southeastern Anatolia, Turkey). Pal茅orient. 2001;27:47鈥?3. CrossRef
    49. Evin A, Girdland Flink L, Bala莽sescu A, Popovici D, Adreescu R, Bailey D, et al. Unravelling the complexity of domestication: A case study using morphometrics and aDNA analyses of archaeological pigs from Romania. Philos Trans R Soc Lond B Biol Sci. 2015;370(1660):pii: 20130616. CrossRef
    50. Renaud S, Pantalacci S, Qu茅r茅 J-P, Laudet V, Auffray J-C. Developmental constraints revealed by co-variation within and among molar rows in two murine rodents. Evol Dev. 2009;11:590鈥?02. CrossRef
    51. Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, Papageorgiou N, et al. The Balkans and the colonization of Europe : the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr. 2012;39:713鈥?3. CrossRef
    52. Genov PV. A review of the cranial characteristics of the Wild Boar ( / Sus scrofa Linnaeus 1758), with systematic conclusions. Mamm Rev. 1999;29:205鈥?4. CrossRef
    53. Bergmann C. 脺ber die Verh盲ltnisse der W盲rme枚konomie der Thiere zu ihrer Gr枚sse. Gottinger Stud. 1847;3:595鈥?08.
    54. Rensch B. Some problems of geographical variation and species formation. Proc Linn Soc London. 1938;150:275鈥?5. CrossRef
    55. Meiri S, Dayan T. On the validity of Bergmann鈥檚 rule. J Biogeogr. 2003;30:331鈥?1. CrossRef
    56. Davis SJM. The effects of temperature change and domestication on the body size of late pleistocene to holocene mammals of Israel. Paleobiology. 1981;7:101鈥?4.
    57. Weaver ME, Ingram DL. Morphological Changes in Swine Associated with Environmental Temperature. Ecology. 1969;50:710鈥?. CrossRef
    58. Schaaf A. Beziehung zwischen K枚rper-, Skelett- und Sch盲delma脽en und dem Ansatz von Fleisch und Fett beim Schwein. In: Wissenschaftliche Abhandlungen, Vol. 2, Deutsche Akademie der Landwirtschaft zu Berlin. Leipzig: Hirzel; 1953.
    59. Fang M, Larson G, Ribeiro HS, Li N, Andersson L. Contrasting mode of evolution at a coat color locus in wild and domestic pigs. PLoS Genet. 2009;5:e1000341. CrossRef
    60. Zohary D, Tchernov E, Horwitz LK. The role of unconscious selection in the domestication of sheep and goats. J Zool. 1998;245:129鈥?5. CrossRef
    61. Lacy RC, Petric A, Warneke M. Inbreeding and outbreeding in captive populations of wild animal species. In: The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives. Thornhill NW. Chicago, Illinois: University of Chicago Press; 1993. p. 352鈥?4.
    62. Renaud S, Alibert P, Auffray J-C. Mandible shape in hybrid mice. Naturwissenschaften. 2009;96:1043鈥?0. CrossRef
    63. Poplin F, Vigne J-D. Observations sur l鈥檕rigine des ovins en Corse. Congr猫s de la Soci茅t茅 Pr茅historique de France, XX 猫me Session, Quercy, 1979. Soci茅t茅 Pr茅historique Fr. 1983;2:238鈥?5.
    64. Poplin F. Origine du Mouflon de Corse dans une nouvelle perspective pal茅ontologique: par marronnage. Ann G茅n茅tique S茅lection Anim. 1979;11:133鈥?3. CrossRef
    65. Vigne J-D, Zazzo A, Sali猫ge J-F, Poplin F, Guilaine J, Simmons A. Pre-Neolithic wild boar management and introduction to Cyprus more than 11,400 years ago. Proc Natl Acad Sci U S A. 2009;106:16135鈥?. CrossRef
    66. Millien V. Morphological evolution is accelerated among island mammals. PLoS Biol. 2006;4:e321. CrossRef
    67. Lomolino MV. Body size of mammals on islands: the island rule reexamined. Am Nat. 1985;125:310鈥?. CrossRef
    68. Lomolino MV. Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr. 2005;32:1683鈥?9. CrossRef
    69. Van Valen LM. Pattern and the balance of nature. Evol Theory. 1973;1:31鈥?9.
    70. Kruska D, R枚hrs M. Comparative鈥搎uantitative investigations on brains of feral pigs from the Galapagos Islands and of European domestic pigs. Z Anat Entwicklungsgesch. 1974;144:61鈥?3. CrossRef
    71. McIntosh GH, Pointon A. The Kangaroo Island strain of pig In biomedical research. Aust Vet J. 1981;57:182鈥?. CrossRef
    72. Manlius N, Gautier A. Le sanglierr en Egypte. Comptes Rendus l鈥橝cad茅mie des Sci - Sci la vie. 1999;322:573鈥?.
    73. Evin A, Cucchi T, Escarguel G, Owen J, Larson G, Strand Vidarsdottir U, et al. Using traditional biometrical data to distinguish West Palearctic wild boar and domestic pigs in the archaeological record: New methods and standards. J Archaeol Sci. 2014;43:1鈥?. CrossRef
    74. Rohlf FJ. tpsDig, Digitize Landmarks and Outlines, Version 2.16. Stony Brook, NY: State University of New York at Stony Brook; 2010 [http://life.bio.sunysb.edu/morph/]
    75. Rohlf FJ, Slice D. Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Syst Biol. 1990;39:40鈥?9.
    76. Goodall CR. Procrustes methods in the statistical analysis of shape revisited. In: Mardia KV, Gill CA E, editors. Current issues in statistical shape analysis. Leeds: University of Leeds Press; 1995. p. 18鈥?3.
    77. Sampson PD, Bookstein FL, Sheenan FH, Bolson EL. Eigenshape analysis of left ventricular outlines from contrast ventriculograms. In: Marcus LF, Corti M, Loy A, Naylar GJP, Slice DE, editors. Advances in morphometrics. New York: NATO ASI Series A: Life Sciences, Plenum; 1996. p. 211鈥?3. CrossRef
    78. Perez SI, Bernal V, Gonzalez PN. Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. J Anat. 2006;208:769鈥?4. CrossRef
    79. Zelditch M, Swiderski DL, Sheets HD, Fink WL. Geometric Morphometrics for Biologists: A Primer. San Diego, London: Elsevier Academic Press; 2004.
    80. Sheets HD, Keonho K, Mitchell CE. A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician Trilobite Triarthrus becki. In: Elewa A, editor. Applications of Morphometrics in Paleontology and Biology. New York: Springer; 2004. p. 67鈥?1.
    81. Rohlf FJ. tpsRelw, Relative warps Analysis, version 1.49. Stony Brook, NY: State University of New York at Stony Brook; 2010 [http://life.bio.sunysb.edu/morph/]
    82. Baylac M. Rmorph: a R geometric and multivariate morphometrics library. 2012. Available from the author: baylac@mnhn.fr.
    83. R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012.
    84. Monteiro LR. Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Syst Biol. 1999;48:192鈥?. CrossRef
    85. Baylac M, Friess M. Fourier descriptors, procrustes superimposition and data dimensionality: an example of cranial shape analysis in modern human populations. In: Slice DE, editor. Modern morphometrics in physical anthropology. New York: Springer-Verlag; 2005. p. 145鈥?5. CrossRef
    86. Sheets HD, Covino KM, Panasiewicz JM, Morris SR. Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Front Zool. 2006;3:15. CrossRef
    87. Kovarovic K, Aiello LC, Cardini A, Lockwood CA. Discriminant function analyses in archaeology: are classification rates too good to be true? J Archaeol Sci. 2011;38:1鈥?3. CrossRef
    88. Mahalanobis PC. On the generalized distance in statistics. Proc Natl Inst Sci India. 1936;2:49鈥?5.
    89. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289鈥?00.
    90. Dray S, Dufour AB. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 2007, 4
    91. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289鈥?0. CrossRef
    92. Evin A (2014) Phenotypic change in animal domestication: Dental variation between domestic, wild, captive, hybrid and insular Sus scrofa [datasets]. LabArchives. http://dx.doi.org/10.6070/H4ZK5DNC.
  • 刊物主题:Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography; Entomology; Genetics and Population Dynamics; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2148
文摘
Background Identifying the phenotypic responses to domestication remains a long-standing and important question for researchers studying its early history. The great diversity in domestic animals and plants that exists today bears testament to the profound changes that domestication has induced in their ancestral wild forms over the last millennia. Domestication is a complex evolutionary process in which wild organisms are moved to new anthropogenic environments. Although modern genetics are significantly improving our understanding of domestication and breed formation, little is still known about the associated morphological changes linked to the process itself. In order to explore phenotypic variation induced by different levels of human control, we analysed the diversity of dental size, shape and allometry in modern free-living and captive wild, wild x domestic hybrid, domestic and insular Sus scrofa populations. Results We show that domestication has created completely new dental phenotypes not found in wild boar (although the amount of variation amongst domestic pigs does not exceed that found in the wild). Wild boar tooth shape also appears to be biogeographically structured, likely the result of post-glacial recolonisation history. Furthermore, distinct dental phenotypes were also observed among domestic breeds, probably the result of differing types and intensity of past and present husbandry practices. Captivity also appears to impact tooth shape. Wild x domestic hybrids possess second molars that are strictly intermediate in shape between wild boar and domestic pigs (third molars, however, showing greater shape similarity with wild boar) while their size is more similar to domestic pigs. The dental phenotypes of insular Sus scrofa populations found on Corsica and Sardinia today (originally introduced by Neolithic settlers to the islands) can be explained either by feralization of the original introduced domestic swine or that the founding population maintained a wild boar phenotype through time. Conclusions Domestication has driven significant phenotypic diversification in Sus scrofa. Captivity (environmental control), hybridization (genome admixture), and introduction to islands all correspond to differing levels of human control and may be considered different stages of the domestication process. The relatively well-known genetic evolutionary history of pigs shows a similar complexity at the phenotypic level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700