Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice
详细信息    查看全文
  • 作者:Hui-yu Zhang (1) (2)
    Yu-nan Zhao (1)
    Zhong-li Wang (1)
    Yu-fang Huang (1)

    1. Laboratory of Pathological Sciences
    ; Basic Medical College ; Nanjing University of Chinese Medicine ; Nanjing ; 210023 ; China
    2. Department of Pathology
    ; School of Basic Medical Sciences ; Guangzhou Medical University ; Guangzhou ; 511436 ; China
  • 关键词:Glycogen ; Corticosterone ; Stress ; Depression ; Hippocampus ; R749.4 ; 鐨川閰?/li> 搴旀縺 ; 鎶戦儊鐥?/li> 绯栧師 ; 娴烽┈
  • 刊名:Journal of Zhejiang University SCIENCE B
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 页码:62-69
  • 全文大小:844 KB
  • 参考文献:1. Allaman, I., Pellerin, L., Magistretti, P.J., 2004. Glucocorticoids modulate neurotransmitter-induced glycogen metabolism in cultured cortical astrocytes. / J. Neurochem., 88(4):900鈥?08. [doi:10.1046/j.1471-4159.2003.02235.x] CrossRef
    2. Banasr, M., Duman, R.S., 2008. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. / Biol. Psychiatry, 64(10):863鈥?70. [doi:10.1016/j.biopsych.2008.06.008] CrossRef
    3. Brown, A.M., Tekk枚k, S.B., Ransom, B.R., 2003. Glycogen regulation and functional role in mouse white matter. / J. Physiol., 549(2):501鈥?12. [doi:10.1113/jphysiol.2003.042416] CrossRef
    4. Brown, A.M., Sickmann, H.M., Fosgerau, K., / et al., 2005. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. / J. Neurosci. Res., 79(1鈥?):74鈥?0. [doi:10.1002/jnr.20335] CrossRef
    5. Cotter, D., Mackay, D., Chana, G., / et al., 2002. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. / Cereb. Cortex, 12(4):386鈥?94. [doi:10.1093/cercor/12.4.386] CrossRef
    6. Dienel, G.A., Cruz, N.F., 2004. Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought?. / Neurochem. Int., 45(2鈥?):321鈥?51. [doi:10.1016/j.neuint.2003.10.011] CrossRef
    7. Dombro, R.S., Bender, A.S., Norenberg, M.D., 2000. Association between cell swelling and glycogen content in cultured astrocytes. / Int. J. Devl. Neurosci., 18(2鈥?):161鈥?69. [doi:10.1016/S0736-5748(99)00084-2] CrossRef
    8. Duric, V., Banasr, M., Stockmeier, C.A., / et al., 2013. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. / Int. J. Neuropsychopharmacol., 16(1):69鈥?2. [doi:10.1017/S1461145712000016] CrossRef
    9. Greenberg, C.C., Jurczak, M.J., Danos, A.M., / et al., 2006. Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways. / Am. J. Physiol. Endocrinol. Metab., 291(1): E1鈥揈8. [doi:10.1152/ajpendo.00652.2005] CrossRef
    10. Ibrahim, L., Duncan, W., Luckenbaugh, D.A., / et al., 2011. Rapid antidepressant changes with sleep deprivation in major depressive disorder are associated with changes in vascular endothelial growth factor (VEGF): a pilot study. / Brain Res. Bull., 86(1鈥?):129鈥?33. [doi:10.1016/j.brainresbull.2011.06.003] CrossRef
    11. Jarcho, M.R., Slavich, G.M., Tylova-Stein, H., / et al., 2013. Dysregulated diurnal cortisol pattern is associated with glucocorticoid resistance in women with major depressive disorder. / Biol. Psychol., 93(1):150鈥?58. [doi:10.1016/j.biopsycho.2013.01.018] CrossRef
    12. Koizumi, S., Fujishita, K., Tsuda, M., / et al., 2003. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. / PNAS, 100(19): 11023鈥?1028. [doi:10.1073/pnas.1834448100] CrossRef
    13. Kong, J., Shepel, P.N., Holden, C.P., / et al., 2002. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. / J. Neurosci., 22(13):5581鈥?587.
    14. Marks, W., Fournier, N.M., Kalynchuk, L.E., 2009. Repeated expore to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength. / Physiol. Behav., 98(1鈥?):67鈥?2. [doi:10.1016/j.physbeh.2009.04.014] CrossRef
    15. Numakawa, T., Adachi, N., Richards, M., / et al., 2013. Brain-derived neurotrophic factor and glucocorticoids: reciprocal influence on the central nervous system. / Neuroscience, 239:157鈥?72. [doi:10.1016/j.neuroscience.2012.09.073] CrossRef
    16. Palsamy, P., Subramanian, S., 2009. Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. / Chem. Biol. Interact., 179(2鈥?): 356鈥?62. [doi:10.1016/j.cbi.2008.11.008] CrossRef
    17. Pfeiffer-Guglielmi, B., Fleckenstein, B., Jung, G., / et al., 2003. Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. / J. Neurochem., 85(1):73鈥?1. [doi:10.1046/j.1471-4159.2003.01644.x] CrossRef
    18. Porsolt, R.D., Anton, G., Blavet, N., / et al., 1978. Behavioral despair in rats: a new model sensitive to antidepressant treatments. / Eur. J. Pharmacol., 47(4):379鈥?91. [doi:10.1016/0014-2999(78)90118-8] CrossRef
    19. Rajkowska, G., Miguel-Hidalgo, J.J., 2007. Gliogenesis and glial pathology in depression. / CNS Neurol. Disord. Drug Targets, 6(3):219鈥?33. [doi:10.2174/187152707780619326] CrossRef
    20. Russell, V.A., Oades, R.D., Tannock, R., / et al., 2006. Response variability in Attention-Deficit/Hyperactivity Disorder: a neuronal and glial energetics hypothesis. / Behav. Brain Funct., 2:30. [doi:10.1186/1744-9081-2-30] CrossRef
    21. Sickmann, H.M., Waagepetersen, H.S., Schousboe, A., / et al., 2012. Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. / Neurochem. Int., 60(3):267鈥?75. [doi:10.1016/j.neuint.2011.12.019] CrossRef
    22. Steru, L., Chermat, R., Thierry, B., / et al., 1985. The tail suspension test: a new method for screening antidepressants in mice. / Psychopharmacology, 85(3):367鈥?70. [doi:10.1007/BF00428203] CrossRef
    23. Suzuki, A., Stern, S.A., Bozdagi, O., / et al., 2011. Astrocyte-neuron lactate transport is required for long-term memory formation. / Cell, 144(5):810鈥?23. [doi:10.1016/j.cell. 2011.02.018] CrossRef
    24. Tesfaye, N., Seaquist, E.R., Oz, G., 2011. Noninvasive measurement of brain glycogen by nuclear magnetic resonance spectroscopy and its application to the study of brain metabolism. / J. Neurosci. Res., 89(12):1905鈥?912. [doi:10.1002/jnr.22703] CrossRef
    25. Tsoi, B., He, R.R., Yang, D.H., / et al., 2011. Carnosine ameliorates stress-induced glucose metabolism disorder in restrained mice. / J. Pharmacol. Sci., 117(4):223鈥?29. [doi:10.1254/jphs.11131FP] CrossRef
    26. Waters, P., McCormick, C.M., 2011. Caveats of chronic exogenous corticosterone treatments in adolescent rats and effects on anxiety-like and depressive behavior and hypothalamic-pituitary-adrenal (HPA) axis function. / Biol. Mood Anxiety Disord., 1(1):4. [doi:10.1186/2045-5380-1-4] CrossRef
    27. Xu, L., Sun, H., 2010. Pharmacological manipulation of brain glycogenolysis as a therapeutic approach to cerebral ischemia. / Mini-Rev. Med. Chem., 10(12):1188鈥?193. [doi:10.2174/1389557511009011188] CrossRef
    28. Yau, S.Y., Lau, B.W., Tong, J.B., / et al., 2011. Hippocampal neurogenesis and dendritic plasticity support running-improved spatial learning and depression-like behaviour in stressed rats. / PLoS ONE, 6(9):e24263. [doi:10.1371/journal.pone.0024263] CrossRef
    29. Zhao, Y., Ma, R., Shen, J., / et al., 2008. A mouse model of depression induced by repeated corticosterone injections. / Eur. J. Pharmacol., 581(1鈥?):113鈥?20. [doi:10.1016/j.ejphar.2007.12.005] CrossRef
    30. Zhao, Y., Xie, W., Dai, J., / et al., 2009. The varying effects of short-term and long-term corticosterone injections on depression-like behavior in mice. / Brain Res., 1261:82鈥?0. [doi:10.1016/j.brainres.2008.12.083] CrossRef
    31. Zhao, Y., Wang, Z., Dai, J., / et al., 2012. Beneficial effects of benzodiazepine diazepam on chronic stress-induced impairment of hippocampal structural plasticity and depression-like behavior in mice. / Behav. Brain Res., 228(2):339鈥?50. [doi:10.1016/j.bbr.2011.12.013] CrossRef
  • 刊物主题:Biomedicine general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1862-1783
文摘
Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700