Numerical Simulation of Reactive Fluid Flow on Unstructured Meshes
详细信息    查看全文
  • 作者:Sarah Jane Fowler ; Georg Kosakowski ; Thomas Driesner…
  • 关键词:Reactive transport ; Numerical simulation ; Fluid–rock interaction ; Enhanced geothermal systems ; Hydrothermal systems
  • 刊名:Transport in Porous Media
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:112
  • 期:1
  • 页码:283-312
  • 全文大小:1,720 KB
  • 参考文献:André, L., Rabemanana, V., Vuataz, F.D.: Geochemical modelling of water–rock interactions and implications on the properties of the Soultz fractured reservoir. Geothermics 35, 507–531 (2006)CrossRef
    Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers, London (1979)
    Bächler, D., Kohl, T.: Coupled thermal–hydraulic–chemical modelling of enhanced geothermal systems. Geophys. J. Int. 161, 533–548 (2005)CrossRef
    Bachu, S.: \(\text{ CO }_{2}\) storage in geological media: role, means, status and barriers to deployment. Prog. Energy Combust. Sci. 34, 254–273 (2008)CrossRef
    Bain, J.G., Mayer, K.U., Blowes, D.W., Frind, E.O., Molson, J.W.H., Kahnt, R., Jenk, U.: Modelling the closure-related geochemical evolution of groundwater at a former uranium mine. J. Contam. Hydrol. 52, 109–135 (2001)CrossRef
    Baliga, B.R., Patankar, S.V.: New finite element formulation for convection–diffusion problems. Numer. Heat Transf. 3, 393–409 (1980)CrossRef
    Bastian, P., Helmig, R.: Efficient fully-coupled solution techniques for two-phase flow in porous media. Parallel multigrid solution and large scale computations. Adv. Water Resour. 23, 199–216 (1999)CrossRef
    Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)
    Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer, Dordrecht (1990)CrossRef
    Berner, U., Kulik, D.A., Kosakowski, G.: Geochemical impact of a low-pH cement liner on the near field of a repository for spent fuel and high-level radioactive waste. Phys. Chem. Earth Parts A/B/C 64, 46–56 (2013)CrossRef
    Bethke, C.M.: Geochemical Reaction Modeling. Oxford University Press, New York (1996)
    Birkle, P.: Advances in geochemical modeling for geothermal applications. In: Bundschuh, J., Zilberbrand, M. (eds.) Geochemical Modeling of Groundwater, Vadose and Geothermal Systems, pp. 153–178. CRC Press, Boca Raton (2011)
    Bradbury, M.H.: Geochemical near-field evolution of a deep geological repository for spent fuel and high-level radioactive waste (Nagra Technical Report NTB 12–01). Wettingen, Switzerland (2014)
    Brown, J.G., Bassett, R.L., Glynn, P.D.: Analysis and simulation of reactive transport of metal contaminants in ground water in Pinal Creek Basin, Arizona. J. Hydrol. 209, 225–250 (1998)CrossRef
    Brune, S.B., Abhyankar, S., Adams, M.F., Brown, J., Gropp, P., Buschelman, K., Eijkhout, V., Knepley, W.D., Kaushik, D., Smith, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H.: PETSc Users Manual (Report ANL-95/11-Revision 3.5). Argonne National Laboratory (2014)
    Bruno, J., Bosbach, D., Kulik, D., Navrotsky, A.: Chemical thermodynamics of solid solutions of interest in radioactive waste management. A state-of-the-art report. OECD NEA, Paris, pp. 86–104 (2007)
    Bryant, S.L., Lakshminarasimhan, S., Pope, G.A.: Buoyancy-dominated multiphase flow and its impact on geological sequestration of \(\text{ CO }_{2}\) . Soc. Pet. Eng. J. 13, 447–454 (2008)
    Carrayrou, J., Hoffmann, J., Knabner, P., Kräutle, S., de Dieuleveult, C., Erhel, J., Van der Lee, J., Lagneau, V., Mayer, K.U., MacQuarrie, K.T.B.: Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems–the MoMaS benchmark case. Comput. Geosci. 14, 483–502 (2010)CrossRef
    Coumou, D., Driesner, T., Geiger, S., Heinrich, C.A., Matthäi, S.: The dynamics of mid-ocean ridge hydrothermal systems: splitting plumes and fluctuating vent temperatures. Earth Planet. Sci. Lett. 245, 218–231 (2006)CrossRef
    Coumou, D.: Numerical Modelling of Mid-ocean Ridge Hydrothermal Systems. Ph.D. Thesis, Department of Earth Sciences, ETH Zurich, Zurich (2008)
    Dalen, V.: Simplified finite-element models for reservoir flow problems. Soc. Petrol. Eng. J. 19, 333–43 (1979)CrossRef
    Diamond, L.W., Alt-Epping, P.: Predictive modelling of mineral scaling, corrosion and the performance of solute geothermometers in a granitoid-hosted, enhanced geothermal system. Appl. Geochem. 51, 216–228 (2014)CrossRef
    Dobson, P.F., Salah, S., Spycher, N., Sonnenthal, E.L.: Simulation of water–rock interaction in the Yellowstone geothermal system using TOUGHREACT. Geothermics 33, 493–502 (2004)CrossRef
    Dolejs, D., Wagner, T.: Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si–Al–Fe–Mg–Ca–Na–K–H–O–Cl at elevated temperatures and pressures: implications for hydrothermal mass transfer in granitic rocks. Geochim. Cosmochim. Acta 72, 526–553 (2008)CrossRef
    Dong, M., Ma, S., Liu, Q.: Enhanced heavy oil recovery through interfacial instability: a study of chemical flooding for Brintnell heavy oil. Fuel 88, 1049–1056 (2009)CrossRef
    Durlofsky, L.J.: A triangle based mixed finite-element–finite volume technique for modeling two phase flow through porous media. J. Comput. Phys. 105, 252–266 (1993)CrossRef
    Engesgaard, P., Kipp, K.L.: A geochemical model for redox-controlled movement of mineral fronts in ground-water flow systems: A case of nitrate removal by oxidation of pyrite. Water Resour. Res. 28, 2829–2843 (1992)CrossRef
    Engesgaard, P., Traberg, R.: Contaminant transport at a waste residue 2. Geochemical transport modeling. Water Resour. Res. 32, 939–951 (1996)CrossRef
    Fairley, J.P., Ingebritsen, S.E., Podgorney, R.K.: Challenges for modeling of enhanced geothermal systems. Ground Water 48, 482–483 (2010)CrossRef
    Ferguson, R., Nichols, C., van Leeusen, T., Kuuskraa, V.: Storing \(\text{ CO }_{2}\) with enhanced oil recovery. Energy Procedia 1, 1989–1996 (2009)CrossRef
    Forsyth, P.A.: A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Stat. Comput. 12, 1029–1057 (1991)CrossRef
    Gaucher, E.C., Blanc, P.: Cement/clay interactions—a review: experiments, natural analogues, and modeling. Waste Manag. 26, 776–788 (2006)CrossRef
    Geiger, S., Roberts, S., Matthäi, S.K., Zoppou, C., Burri, A.: Combining finite element and finite volume methods for efficient multiphase flow simulations in highly heterogeneous and structurally complex geologic media. Geofluids 4, 284–299 (2004)CrossRef
    Gresho, P.M., Lee, R.L.: Don’t suppress the wiggles—they’re telling you something. In: Hughes, T.J.R. (ed.) Finite Element Methods for Convection-Dominated Flows, pp. 37–61. American Society of Mechanical Engineers, New York (1979)
    Gruen, G., Weis, P., Driesner, T., Heinrich, C.A., de Ronde, C.E.J.: Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation. Earth Planet. Sci. Lett. 404, 307–318 (2014)CrossRef
    Harvie, C.E., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–\(\text{ SO }_{4}\) –OH–\(\text{ HCO }_{3}\) –\(\text{ CO }_{3}\) –\(\text{ H }_{2}\text{ O }\) -system to high ionic strengths at \(25^{\circ }\text{ C }\) . Geochim. Cosmochim. Acta 48, 723–751 (1984)CrossRef
    Hayek, M., Kosakowski, G., Jakob, A., Churakov, S.V.: A class of analytical solutions for multidimensional multispecies diffusive transport coupled with precipitation-dissolution reactions and porosity changes. Water Resour. Res. 48, W03525 (2012)CrossRef
    Hayek, M., Kosakowski, G., Churakov, S.V.: Exact analytical solutions for a diffusion problem coupled with a precipitation-dissolution reaction and feedback of porosity change. Water Resour. Res. 47, W07545 (2011)CrossRef
    Helgeson, H.C., Kirkham, D.H., Flowers, D.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 C and 5 kb. Am. J. Sci 281, 1249–1516 (1981)CrossRef
    Helmig, R., Huber, R.: Comparison of Galerkin-type discretization techniques for two-phase flow in heterogeneous porous media. Adv. Water Resour. 21, 697–711 (1998)CrossRef
    Henderson, A., Ahrens, J., Law, C.: The Paraview Guide. Kitware Inc., Clifton Park, New York (2004)
    Henderson, T.H., Mayer, K.U., Parker, B.L., Al, T.A.: Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate. J. Contam. Hydrol. 106, 195–211 (2009)CrossRef
    Hummel, W., Berner, U., Curti, E., Pearson, F.J., Thoenen, T.: Nagra/PSI Chemical Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland (2002)
    Huyakorn, P.S., Pinder, G.F.: A new finite element technique for the solution of two-phase flow through porous media. Adv. Water Resour. 1, 285–298 (1978)CrossRef
    Ingebritsen, S.E., Sanford, W.E., Neuzil, C.E.: Groundwater in Geologic Processes, 2nd edn. Cambridge University Press, Cambridge (2006)
    Jensen, O.K., Finlayson, B.A.: Oscillation limits for weighted residual methods applied in convection–diffusion problems. Int. J. Numer. Methods Eng. 15, 1681–1689 (1980)CrossRef
    Karpov, I.K., Chudnenko, K.V., Kulik, D.A.: Modeling chemical mass transfer in geochemical processes; thermodynamic relations, conditions of equilibria and numerical algorithms. Am. J. Sci. 297, 767–806 (1997)CrossRef
    Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T., Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., Park, C.H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y.Y., Singh, A.K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B.: OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Env. Earth Sci. 67, 589–599 (2012)CrossRef
    Kosakowski, G., Berner, U.: The evolution of clay rock/cement interfaces in a cementitious repository for low- and intermediate level radioactive waste. Phys. Chem. Earth Parts A/B/C 64, 65–86 (2013)CrossRef
    Kosakowski, G., Watanabe, N.: OpenGeoSys-Gem: a numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. J. Phys. Chem. Earth. 70–71, 138–149 (2014)CrossRef
    Kosakowski, G., Blum, P., Kulik, D.A., Pfingsten, W.: Evolution of a generic clay/cement interface: First reactive transport calculations utilizing a Gibbs energy minimization based approach for geochemical calculations. J. Environ. Sci. Sustain. Soc. 3, 41–49 (2009)CrossRef
    Kosakowski, G., Berner, U., Wieland, E., Glaus, M.A., Degueldre, C.: Geochemical evolution of the L/ILW near-field (Nagra Technical Report NTB 14–11). Nagra, Wettingen, Switzerland (2014)
    Kulik, D.A., Wagner, T., Dmytrieva, S.V., Kosakowski, G., Hingerl, F.F., Chudnenko, K.V., Berner, U.R.: GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computat. Geosci. 17, 1–24 (2013)
    Lake, L.W.: Enhanced Oil Recovery. 550 pp (1989)
    Lasaga, A.: Chemical kinetics of water–rock interactions. J. Geophys. Res. 89, 4009–4025 (1984)CrossRef
    Letniowski, F.W., Forsyth, P.A.: A control volume finite element method for three-dimensional NAPL groundwater contamination. Int. J. Numer. Methods Fluids 13, 955–970 (1991)CrossRef
    Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (eds.): Reviews in Mineralogy, vol. 34, pp. xiii \(+\) 438. Mineralogical Society of America, Washington, DC (1996)
    Machel, H.G.: Concepts and models of dolomitization: a critical appraisal. Geol. Soc. Spec. Publ. 235, 7–63 (2004)CrossRef
    Mangold, D.C., Tsang, A.: summary of subsurface hydrological and hydrochemical models. Rev. Geophys. 29, 51–79 (1991)CrossRef
    Matthäi, S.K., Geiger, S., Roberts, S.G., Paluszny, A., Belayneh, M., Burri, A., Mezentsev, A., Lu, H., Coumou, D., Driesner, T., Heinrich, C.A.: Numerical simulation of multi-phase fluid flow in structurally complex reservoirs. Geol. Soc. Spec. Publ. 292, 405–429 (2007)CrossRef
    Middleton, A.W., Förster, H.J., Uysal, I.T., Golding, S.D., Rhede, D.: Accessory phases from the Soultz monzogranite, Soultz-sous-Forets, France: implications for titanite destabilisation and differential REE, Y and Th mobility in hydrothermal systems. Chem. Geol. 335, 105–117 (2013)CrossRef
    Monecke, T., Kempe, U., Trinkler, M., Thomas, R., Dulski, P., Wagner, T.: Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology 39, 295–298 (2011)CrossRef
    Narasimhan, T.N., Witherspoon, P.A.: An integrated finite difference method for analyzing fluid flow in porous media. Water Resour. Res. 12, 57–64 (1976)CrossRef
    Nick, H.M., Paluszny, A., Blunt, M.J., Matthäi, S.K.: Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations. Phys. Rev. E 84, 056301 (2011)CrossRef
    Noorishad, J., Carnahan, C.L., Benson, L.V.: Development of the Nonequilibrium Reactive Chemical Transport Code CHEMTRNS, Rep. LBL-22361 Lawrence Berkeley Lab., Univ. of Calif., Berkeley (1987)
    Oelkers, E.H., Helgeson, H.C.: Triple-ion anions and polynuclear complexing in supercritical electrolyte solutions. Geochim. Cosmochim. Acta 54, 727–738 (1990)CrossRef
    Ouangrawa, M., Molson, J., Aubertin, M., Bussiere, B., Zagury, G.J.: Reactive transport modelling of mine tailings columns with capillarity-induced high water saturation for preventing sulfide oxidation. Appl. Geochem. 24, 1312–1323 (2009)CrossRef
    Palandri, J.L., Kharaka, Y.K.: A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling (Open File Report 2004–1068). U.S. Geological Survey, Menlo Park, California (2004)
    Pfingsten, W.: Modular Coupling of Transport and Chemistry: Theory and Model Applications. PSI-Bericht. Paul Scherrer Institute, Villigen (1994)
    Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2307 (1973)CrossRef
    Poppei, J., Schwarz, R., Wilhelm, S., Masset, O.: Praxisorientierte Unterstützung des ETHZ-CCES-Projekts GEOTHERM. AF-Consult Switzerland AG, Baden, Switzerland, pp. 1–14 (2012)
    Portier, S., Vuataz, F.D., Nami, P., Sanjuan, B., Gérard, A.: Chemical stimulation techniques for geothermal wells: experiments on the three-well EGS system at Soultz-sous-Forêts, France. Geothermics 38, 349–359 (2009)CrossRef
    Portier, S., Vuataz, F.D.: Developing the ability to model acid–rock interactions and mineral dissolution during the RMA stimulation test performed at the Soultz-sous-Forêts EGS site, France. C. R. Geosci. 342, 668–675 (2010)CrossRef
    Prommer, H.: A Reactive Multicomponent Transport Model for Saturated Porous Media. User’s Manual Version 1.0. Contaminated Land Assessment and Remediation Research Centre, The University of Edinburgh, UK (2002)
    Pruess, K.: The TOUGH codes-a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J. 3, 738–746 (2004)
    Rabemanana, V., Durst, P., Bächler, D., Vuataz, F.D., Kohl, T.: Geochemical modelling of the Soultz-sous-Forêts Hot Fractured Rock system: comparison of two reservoirs at 3.8 and 5 km depth. Geothermics 32, 645–653 (2003)CrossRef
    Raffensperger, J.B., Garven, G.: The formation of unconformity-type uranium ore deposits 1. Coupled groundwater flow and heat transport modeling. Am. J. Sci 295, 581–636 (1995a)CrossRef
    Raffensperger, J.B., Garven, G.: The formation of unconformity-type uranium ore deposits 2. Coupled hydrochemical modeling. Am. J. Sci. 295, 639–696 (1995b)CrossRef
    Rauchenstein-Martinek, K., Wagner, T., Wälle, M., Heinrich, C.A.: Gold concentrations in metamorphic fluids: a LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chem. Geol. 385, 70–83 (2014)CrossRef
    Reed, M.H.: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta 46, 513–528 (1982)CrossRef
    Riaz, A., Tchelepi, H.A.: Dynamics of vertical displacement in porous media associated with \(\text{ CO }_{2}\) sequestration. SPE J. 13, 305–313 (2008)CrossRef
    Ruge, J.K., Stüben, K.: Algebraic multigrid. In: McCormick, S.F. (ed.) Multigrid Methods, pp. 73–130. Society for Industrial and Applied Mathematics, Philadelphia (1987)CrossRef
    Saaltink, M.W., Carrera, J., Ayora, C.: A comparison of two approaches for reactive transport modelling. J. Geochem. Explor. 69–70, 97–101 (2000)CrossRef
    Sack, R.O., Lichtner, P.C.: Constraining compositions of hydrothermal fluids in equilibrium with polymetallic ore-forming sulfide assemblages. Econ. Geol. 104, 1249–1264 (2009)CrossRef
    Schäfer, D., Schäfer, W., Kinzelbach, W.: Simulation of reactive processes related to biodegradation in aquifers 1, structure of the three-dimensional reactive transport model. J. Contam. Hydrol. 31, 167–186 (1998)CrossRef
    Seol, Y., Lee, K.K.: Application of TOUGHREACT to performance evaluations of geothermal heat pump systems. Geosci. J. 11, 83–91 (2007)CrossRef
    Shao, H., Dmytrieva, S.V., Kolditz, O., Kulik, D.A., Pfingsten, W., Kosakowski, G.: Modeling reactive transport in non-ideal aqueous-solid solution system. Appl. Geochem. 24, 1287–1300 (2009)CrossRef
    Shao, H., Kosakowski, G., Berner, U., Kulik, D.A., Mäder, U.K., Kolditz, O.: Reactive transport modeling of the clogging process at Maqarin natural analogue site. Phys. Chem. Earth Parts A/B/C 64, 21–31 (2013)CrossRef
    Shewchuk, J.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theory Appl. 22, 21–74 (2002)CrossRef
    Shock, E.L., Oelkers, E.H., Johnson, J.W., Sverjensky, D.A., Helgeson, H.C.: Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to \(1000^{\circ }\text{ C }\) and 5 kbar. J. Chem. Soc. Farad. Trans. 88, 803–826 (1992)CrossRef
    Shock, E.L., Sassini, D.C., Willis, M., Sverjensky, D.A.: Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61, 907–950 (1997)CrossRef
    Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294, 529–592 (1994)CrossRef
    Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 240, 539–558 (2005)CrossRef
    Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Shao, H., Simunek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Computational Geosciences (2014). doi:10.​1007/​s10596-014-9443-x
    Stüben, K.: Algebraic multigrid (AMG)—an introduction with applications: Gesellschaft für Mathematik und Datenverarbeitung mbH (GMD) Report 70 (1999)
    Sverjensky, D.A., Shock, E.L., Helgeson, H.C.: Prediction of the thermodynamic properties of aqueous metal complexes to \(1000^{\circ }{\rm C}\) and 5 kb. Geochim. Cosmochim. Acta 61, 1359–1412 (1997)CrossRef
    Taron, J., Elsworth, D.: Thermal–hydrologic–mechanical–chemical processes in the evolution of engineered geothermal reservoirs. Int. J. Rock Mech. Min. Sci. 46, 855–864 (2009)CrossRef
    Thien, B.M.J., Kulik, D.A., Curti, E.: A unified approach to model uptake kinetics of trace elements in complex aqueous–solid solution systems. Appl. Geochem. 41, 135–150 (2014)CrossRef
    Tokunaga, T., Mogi, K., Matsubara, O., Tosaka, H., Kojima, K.: Buoyancy and interfacial force effects on two-phase displacement patterns; an experimental study. AAPG Bull. 84, 65–74 (2000)
    Valocchi, A.J., Street, R.L., Roberts, P.V.: Transport of ion-exchanging solutes in groundwater: chromatographic theory and field simulation. Water Resour. Res. 17, 1517–1527 (1981)CrossRef
    van der Straaten, F., Halama, R., John, T., Schenk, V., Hauff, F., Andersen, N.: Tracing the effects of high-pressure metasomatic fluids and seawater alteration in blueschist-facies overprinted eclogites: implications for subduction channel processes. Chem. Geol. 292–293, 69–87 (2012)CrossRef
    Voller, V.R.: Basic Control Volume Finite Element Methods for Fluids and Solids. IISc Research Monographs Series, Vol. 1. World Scientific Publishing Co. Pte. Ltd, Singapore (2009)CrossRef
    Wagner, T., Kulik, D.A., Hingerl, F.F., Dmytrieva, S.V.: GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Can. Mineral. 50, 1173–1195 (2012)CrossRef
    Wagner, W., Pruss, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)CrossRef
    Walter, A.L., Frind, E.O., Blowes, D.W., Ptacek, C.J., Molson, J.W.: Modeling of multicomponent reactive transport in groundwater. 2. Metal mobility in aquifers impacted by acidic mine tailings discharge. Water Resour. Res. 30, 3149–3158 (1994)CrossRef
    Wang, W., Kolditz, O.: Object-oriented finite element analysis of thermo–hydro–mechanical (THM) problems in porous media. Int. J. Numer. Methods Eng. 69, 162–201 (2007)CrossRef
    Wang, Y., Van Cappellen, P.: A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta 60, 2993–3014 (1996)CrossRef
    Wing, B.A., Ferry, J.M.: Magnitude and geometry of reactive fluid flow from direct inversion of spatial patterns of geochemical alteration. Am. J. Sci. 307, 793–832 (2007)CrossRef
    Winslow, A.M.: Numerical solution of the quasilinear Poisson equation in a nonuniform triangular mesh. J. Comput. Phys. 1, 149–172 (1966)CrossRef
    Wolery, T.J.: EQ3/6, a software package for geochemical modeling of aqueous systems, Lawrence Livermore National Laboratory Report UCRL MA-110662-PT-1 (1992)
    Wolery, T., Jove-Colon, C., Rard., J., Wijesinghe., A.: Pitzer database development: description of the Pitzer geochemical thermodynamic database data0.ypf. Appendix I in in-Drift precipitates/salts model (Mariner, P.) Report ANL-EBS-MD-000045 REV 02. Las Vegas, Nevada: Bechtel SAIC Company (2004)
    Xie, M., Wang, W., Jonge, J.D., Kolditz, O.: Numerical modelling of swelling pressure in unsaturated expansive elasto-plastic porous media. Transp. Por. Med. 66, 311–339 (2007)CrossRef
    Xu, T., Pruess, K.: Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. Methodol. Am. J. Sci. 301, 16–33 (2001)CrossRef
    Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT user’s guide: A simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media, Lawrence Berkeley National Laboratory Report LBNL-55460, Berkeley, CA (2004)
    Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and \(\text{ CO }_{2}\) geological sequestration. Comput. Geosci. 32, 145–165 (2006)CrossRef
    Xu, T., Zheng, L., Tian, H.: Reactive transport modeling for \(\text{ CO }_{2}\) geological sequestration. J. Petrol. Sci. Eng. 78, 765–777 (2011)CrossRef
    Yabusaki, S.B., Steefel, C.I., Wood, B.D.: Multidimensional, multicomponent, subsurface reactive transport in nonuniform velocity fields: code verification using an advective reactive streamtube approach. J. Contam. Hydrol. 30, 299–331 (1998)CrossRef
    Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments in hydrogeochemical transport models of reactive multi-chemical components. Water Resour. Res. 25, 93–108 (1989)CrossRef
    Zhang, S., Yang, L., DePaolo, D.J., Steefel, C.: Chemical affinity and pH effects on chlorite dissolution kinetics under geological \(\text{ CO }_{2}\) sequestration related conditions. Chem. Geol. 396, 208–217 (2015)CrossRef
    Zhao, C., Reid, L.B., Regenauer-Lieb, K.: Some fundamental issues in computational hydrodynamics of mineralization: a review. J. Geochem. Explor. 112, 21–34 (2012)CrossRef
  • 作者单位:Sarah Jane Fowler (1)
    Georg Kosakowski (2)
    Thomas Driesner (3)
    Dmitrii A. Kulik (2)
    Thomas Wagner (4)
    Stefan Wilhelm (5)
    Olivier Masset (5)

    1. Division of Geology, KU Leuven, Leuven, Belgium
    2. Laboratory for Waste Management, Paul Scherrer Institut (PSI), 5232, Villigen, Switzerland
    3. Institute of Geochemistry and Petrology, ETH Zurich, Zurich, Switzerland
    4. Division of Geology and Geochemistry, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
    5. Groundwater Protection and Waste Disposal, AF-Consult Switzerland Ltd., Täfernstrasse 26, 5405, Baden, Switzerland
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
Reactive transport simulation on unstructured meshes can provide fundamental insight into the effect that geometric complexity of geologic structures has on fluid flow and development of reaction fronts. When applied to conditions ranging from ambient to hydrothermal and combined with compressible flow, accounting for geometric complexity provides an advantage for applications such as enhanced geothermal systems, carbon dioxide sequestration, hydrothermal ore formation, and radioactive waste disposal. We introduce CSMP–GEMS, a thermo–hydro and chemical multicomponent reactive transport code based on coupling of the Complex System Modeling Platform (CSMP) transport modeling framework with the GEMS3K chemical speciation solver. GEMS3K features a comprehensive suite of non-ideal activity and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions). Current features include transient, compressible, single-phase advective and/or dispersive fluid flow, mass transport, heat transport in saturated porous media, and geochemical reactions in subsurface hydrothermal systems. We present two one-dimensional numerical experiments to compare CSMP–GEMS with the reactive transport codes OpenGeoSys–GEM and TOUGHREACT. Each experiment simulates calcite dissolution and dolomite precipitation during advection and hydrodynamic dispersion. One experiment corresponds to an existing isothermal \((25\,^{\circ }\mathrm{C})\) benchmark; the second explores the applicability of the codes to non-isothermal problems. We also present a two-dimensional example that illustrates the application of CSMP–GEMS on unstructured meshes that can represent complex geologic relations. The results suggest that all three codes are well suited to predicting fluid circulation, heat transport, and mineral stability within hydrothermal systems relevant to enhanced geothermal systems and carbon dioxide sequestration in deep aquifers. Self-consistent accounting for kinetic processes is a major advantage of TOUGHREACT, but published applications are restricted to orthogonal meshes, potentially limiting the applicability of TOUGHREACT to geometrically less complex natural systems. OpenGeoSys–GEM can operate on unstructured meshes that may include multiple element types, facilitating the examination of non-orthogonal domains. However, due to its reliance on the groundwater equations, OpenGeoSys–GEM may be best suited for application to systems in which flow includes dispersion/diffusion and is not compressible. CSMP–GEMS does not currently calculate reaction kinetics, but may be useful for application to geometrically complex systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700