Synthesis, multicolour tuning, and emission enhancement of ultrasmall LaF3:Yb3+/Ln3+ (Ln = Er, Tm, and Ho) upconversion nanoparticles
详细信息    查看全文
  • 作者:Xiaoyong Huang
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:51
  • 期:7
  • 页码:3490-3499
  • 全文大小:3,664 KB
  • 参考文献:1.Liu X, Yan C-H, Capobianco JA (2015) Photon upconversion nanomaterials. Chem Soc Rev 44:1299. doi:10.​1039/​C5CS90009C CrossRef
    2.Liu Y, Tu D, Zhu H, Chen X (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42:6924. doi:10.​1039/​C3CS60060B CrossRef
    3.Zeng S, Wang H, Lu W et al (2014) Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization. Biomaterials 35:2934. doi:10.​1016/​j.​biomaterials.​2013.​11.​082 CrossRef
    4.Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41:1323. doi:10.​1039/​C1CS15187H CrossRef
    5.Wei Z, Sun L, Liu J et al (2014) Cysteine modified rare-earth up-converting nanoparticles for in vitro and in vivo bioimaging. Biomaterials 35:387. doi:10.​1016/​j.​biomaterials.​2013.​09.​110 CrossRef
    6.Yang D, P Ma P, Cheng Z, Hou Z, Li C, Lin J (2015) Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem Soc Rev 44:1416. doi:10.​1039/​C4CS00155A CrossRef
    7.Chen D, Liu L, Huang P, Ding M, Zhong J, Ji Z (2015) Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture. J Phys Chem Lett 6:2833. doi:10.​1021/​acs.​jpclett.​5b01180 CrossRef
    8.Chen D, Chen Y, Lu H, Ji Z (2014) A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence. Inorg Chem 53:8638. doi:10.​1021/​ic501238u CrossRef
    9.Gai S, Li C, Yang P, Lin J (2013) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114:2343. doi:10.​1021/​cr4001594 CrossRef
    10.Dai Y, Xiao H, Liu J et al (2013) In Vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J Am Chem Soc 135:18920. doi:10.​1021/​ja410028q CrossRef
    11.Dai Y, Ma P, Cheng Z et al (2012) Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4:Yb3+/Er3+@Hydrogel core–shell hybrid microspheres. ACS Nano 6:3327. doi:10.​1021/​nn300303q CrossRef
    12.Liu Q, Sun Y, Yang T, Feng W, Li C, Li F (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in Vivo. J Am Chem Soc 133:17122. doi:10.​1021/​ja207078s CrossRef
    13.Wong H-T, Vetrone F, Naccache R, Chan HLW, Hao J, Capobianco JA (2011) Water dispersible ultra-small multifunctional KGdF4:Tm3 + , Yb3 + nanoparticles with near-infrared to near-infrared upconversion. J Mater Chem 21:16589. doi:10.​1039/​c1jm12796a CrossRef
    14.Chen G, Ohulchanskyy TY, Kumar R, Ågren H, Prasad PN (2010) Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4:3163. doi:10.​1021/​nn100457j CrossRef
    15.Chen G, Qiu H, Fan R et al (2012) Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence. J Mater Chem 22:20190. doi:10.​1039/​C2JM32298F CrossRef
    16.Chen G, Ohulchanskyy TY, Law WC, Agren H, Prasad PN (2011) Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale 3:2003. doi:10.​1039/​C0NR01018A CrossRef
    17.Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703. doi:10.​2217/​17435889.​3.​5.​703 CrossRef
    18.Huang X (2015) Dual-model upconversion luminescence from NaGdF4:Nd/Yb/Tm@NaGdF4:Eu/Tb core–shell nanoparticles. J Alloys Compd 628:240. doi:10.​1016/​j.​jallcom.​2014.​12.​178 CrossRef
    19.Gao D, Zhang X, Zheng H, Shi P, Li L, Ling Y (2013) Codopant ion-induced tunable upconversion emission in β-NaYF4:Yb3+/Tm3+ nanorods. Dalton Trans 42:1834. doi:10.​1039/​C2DT31814H CrossRef
    20.T Jiang, W Qin, J Zhou (2014) J Alloys Compd 593:79. doi:10.​1016/​j.​jallcom.​2014.​01.​048
    21.Chen D, Huang P (2014) Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core. Dalton Trans 43:11299. doi:10.​1039/​C4DT01237B CrossRef
    22.Chen D, Wan Z, Zhou Y et al (2015) Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors. ACS Appl Mater Interfaces 7:19484. doi:10.​1021/​acsami.​5b06036 CrossRef
    23.Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831. doi:10.​1039/​C0JM00031K CrossRef
    24.Gai S, Yang P, Li C et al (2010) Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv Funct Mater 20:1166. doi:10.​1002/​adfm.​200902274 CrossRef
    25.Zhuang J, Yang X, Fu J et al (2013) Monodispersed β-NaYF4 mesocrystals. In Situ ion exchange and multicolor up- and down-conversions. Cryst Growth Des 13:2292. doi:10.​1021/​cg301751c CrossRef
    26.Gao D, Tian D, Xiao G, Chong B, Yu G, Pang Q (2015) Up/down conversion switching by adjusting the pulse width of red laser beams in LaF3:Tm3+ nanocrystals. Opt Lett 40:3580. doi:10.​1364/​OL.​40.​003580 CrossRef
    27.Ma J, Huang P, He M et al (2012) Folic acid-conjugated LaF3:Yb, Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography. J Phys Chem B 116:14062. doi:10.​1021/​jp309059u CrossRef
    28.Sivakumar S, Boyer J-C, Bovero E, van Veggel FCJM (2009) Up-conversion of 980 nm light into white light from sol–gel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles. J Mater Chem 19:2392. doi:10.​1039/​b818397j CrossRef
    29.Bai X, Li D, Liu Q, Dong B, Xu S, Song H (2012) Concentration-controlled emission in LaF3:Yb3+/Tm3+ nanocrystals: switching from UV to NIR regions. J Mater Chem 22:24698. doi:10.​1039/​C2JM35403A CrossRef
    30.Li F, Li C, Liu X et al (2013) Microwave-assisted synthesis and up-down conversion luminescent properties of multicolor hydrophilic LaF3:Ln3+ nanocrystals. Dalton Trans 42:2015. doi:10.​1039/​C2DT32295A CrossRef
    31.Bao L, Li Z, Tao Q, Xie J, Mei Y, Xiong Y (2013) Controlled synthesis of uniform LaF3 polyhedrons, nanorods and nanoplates using NaOH and ligands. Nanotechnology 24:145604. doi:10.​1088/​0957-4484/​24/​14/​145604 CrossRef
    32.Huang X (2015) Giant enhancement of upconversion emission in (NaYF4:Nd3+/Yb3+/Ho3+)/(NaYF4:Nd3+/Yb3+) core/shell nanoparticles excited at 808 nm. Opt Lett 40:3599. doi:10.​1364/​OL.​40.​003599 CrossRef
    33.Li D, Shao Q, Dong Y, Jiang J (2014) Temperature sensitivity and stability of NaYF4:Yb3+, Er3+ core-only and core–shell upconversion nanoparticles. J Alloys Compd 617:1. doi:10.​1016/​j.​jallcom.​2014.​07.​197 CrossRef
    34.Huang X, Lin J (2015) Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles. J Mater Chem C 3:7652. doi:10.​1039/​C5TC01438G CrossRef
    35.Wang M, Mi C, Zhang Y et al (2009) NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J Phys Chem C 113:19021. doi:10.​1021/​jp906394z CrossRef
    36.Chen D, Wan Z, Zhou Y et al (2015) Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior. J Alloys Compd 638:21. doi:10.​1016/​j.​jallcom.​2015.​02.​170 CrossRef
    37.Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173. doi:10.​1039/​C2CS35288E CrossRef
    38.Li X, Wang R, Zhang F, Zhao D (2014) Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett 14:3634. doi:10.​1021/​nl501366x CrossRef
    39.Ding M, Ni Y, Song Y et al (2015) Li+ ions doping core–shell nanostructures: an approach to significantly enhance upconversion luminescence of lanthanide-doped nanocrystals. J Alloys Compd 623:42. doi:10.​1016/​j.​jallcom.​2014.​10.​089 CrossRef
    40.Mai H-X, Zhang Y-W, Sun L-D, Yan C-H (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals. J Phys Chem C 111:13721. doi:10.​1021/​jp073920d CrossRef
    41.Johnson NJJ, Korinek A, Dong C, van Veggel FCJM (2012) Self-focusing by ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J Am Chem Soc 134:11068. doi:10.​1021/​ja302717u CrossRef
    42.Dong H, Sun L-D, Wang Y-F et al (2015) Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x nanocrystals. J Am Chem Soc 137:6569. doi:10.​1021/​jacs.​5b01718 CrossRef
    43.Zhang F, Shi Q, Zhang Y et al (2011) Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding. Adv Mater 23:3775. doi:10.​1002/​adma.​201101868
    44.Ren G, Zeng S, Hao J (2011) Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF4 nanorods. J Phys Chem C 115:20141. doi:10.​1021/​jp2064529 CrossRef
    45.Boyer J-C, van Veggel FCJM (2010) Absolute quantum yield measurements of colloidal NaYF4:Er3 + , Yb3 + upconverting nanoparticles. Nanoscale 2:1417. doi:10.​1039/​C0NR00253D CrossRef
    46.Zhang F, Che R, Li X et al (2012) Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett 12:2852. doi:10.​1021/​nl300421n CrossRef
  • 作者单位:Xiaoyong Huang (1)

    1. Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, 030024, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
The development of efficient sub-10 nm ultrasmall upconversion nanoparticles will open the door to the exciting application in biological labelling and imaging. In this paper, we demonstrated a facile method for the synthesis of monodisperse sub-10 nm hexagonal-phased LaF3 nanoparticles doped with upconverting lanthanide ions (Yb3+/Ln3+, Ln = Er3+, Tm3+, and Ho3+). The particle size of the as-synthesized LaF3 nanoparticles can be tuned by varying the preparation temperature. Upon excitation at 980 nm, the LaF3:Yb3+/Ln3+ nanoparticles showed intense upconversion emissions, and the colour output can be precisely modulated by changing the species and concentration of the lanthanide activators. In order to further enhance the upconversion emission intensity of the ultrasmall LaF3:Yb3+/Ln3+ nanoparticles, we adopted the strategy of core–shell nanostructured design to minimize the surface quenching effect. After coating an inert LaF3 shell, a maximum ninefold enhancement in upconversion luminescence was achieved under 980 nm excitation. These as-prepared lanthanide-doped LaF3 upconversion nanoparticles may find promising applications in biomedicine fields as luminescent nanoprobes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700