In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3:Er3+,Yb3+ nanostructures for biomedical applications
详细信息    查看全文
  • 作者:Eva Hemmer (1) eva.hemmer@sogalabo.jp
    Hiroyuki Takeshita (2)
    Tomoyoshi Yamano (2)
    Takanori Fujiki (3)
    Yvonne Kohl (4)
    Karin L?w (4)
    Nallusamy Venkatachalam (3)
    Hiroshi Hyodo (13)
    Hidehiro Kishimoto (12)
    Kohei Soga (13)
  • 刊名:Journal of Materials Science Materials in Medicine
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:23
  • 期:10
  • 页码:2399-2412
  • 全文大小:958.0 KB
  • 参考文献:1. Hong YL, Fan HS, Li B, Guo B, Liu M, Zhang XD. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater Sci Eng R. 2010;70:225–42.
    2. Madurantakam PA, Cost CP, Simpson DG, Bowlin GL. Science of nanofibrous scaffold fabrication: strategies for next generation tissue-engineering scaffolds. Nanomedicine. 2009;4:193–206.
    3. Poinern GEJ, Fawcett D, Ng YJ, Ali N, Brundavanam RK, Jiang ZT. Nanoengineering a biocompatible inorganic scaffold for skin wound healing. J Biomed Nanotechnol. 2010;6(Special issue):497–510.
    4. Kallinteri P, Higgins S, Hutcheon GA, St Pourcain CB, Garnett MC. Novel functionalized biodegradable polymers for nanoparticle drug delivery systems. Biomacromolecules. 2005;6:1885–94.
    5. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002;10:317–25.
    6. Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine. 2005;1:22–30.
    7. Tosi G, Costantino L, Rivasi F, Ruozi B, Leo E, Vergoni AV, Tacchi R, Bertolini A, Vandelli MA, Forni F. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release. 2007;122:1–9.
    8. Ravi Kumar MNV. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci. 2000;3:234–58.
    9. Yan E, Fu Y, Wang X, Ding Y, Qian H, Wang CH, Hu Y, Jiang X. Hollow chitosan-silica nanospheres for doxorubicin delivery to cancer cells with enhanced antitumor effect in vivo. J Mater Chem. 2011;21:3147–55.
    10. Rosenblum LT, Kosaka N, Mitsunaga M, Choyke PL, Kobayashi H. In vivo molecular imaging using nanomaterials: general in vivo characteristics of nano-sized reagents and applications for cancer diagnosis (review). Mol Membr Biol. 2010;27:274–85.
    11. Corr SA, Rakovich YP, Gun’ko YK. Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett. 2008;3:87–104.
    12. Pautler M, Brenner S. Nanomedicine: promises and challenges for the future of public health. Int J Nanomed. 2010;5:803–9.
    13. Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem. 2006;384:620–30.
    14. Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli S, Pathak S, Mazzatenta A, Lieber CM, Prato M, Bellamkonda RV, Silva GA, Wong Shi Kam N, Patolsky F, Ballerini L. Nanomaterials for neural interfaces. Adv Mater. 2009;21:3970–4004.
    15. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods. 2008;5:545–51.
    16. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 2010;90:1103–63.
    17. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Science. 2005;307:538–44.
    18. Sharma P, Brown S, Walter G, Santra S, Moudgil B. Nanoparticles for bioimaging. Adv Colloid Interface Sci. 2006;123–126:471–85.
    19. Lu Z, Zhu Z, Zheng X, Qiao Y, Guo J, Li CM. Biocompatible fluorescence-enhanced ZrO2-CdTe quantum dot nanocomposite for in vitro cell imaging. Nanotechnology. 2011;22:155604.
    20. Vela J, Htoon H, Chen Y, Park YS, Ghosh Y, Goodwin PM, Werner JH, Wells NP, Casson JL, Hollingsworth JA. Effect of shell thickness and composition on blinking suppression and the blinking mechanism in ‘giant’ CdSe/CdS nanocrystal quantum dots. Biophotonics. 2010;3:706–17.
    21. Frantsuzov PA, Marcus RA. Explanation of quantum dot blinking without the long-lived trap hypothesis. Phys Rev B. 2005;72:155321.
    22. Cotton S. Lanthanide and actinide chemistry. Chichester: Wiley; 2006.
    23. Hanaoka K. Development of responsive lanthanide-based magnetic resonance imaging and luminescent probes for biological applications. Chem Pharm Bull. 2010;58:1283–94.
    24. Andraud C, Maury O. Lanthanide complexes for nonlinear optics: from fundamental aspects to applications. Eur J Inorg Chem. 2009;29–30:4357–71.
    25. Das GK, Heng BC, Ng SC, White T, Loo JSC, D’Silva L, Padmanabhan P, Bhakoo KK, Selvan ST, Tan TTY. Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir. 2010;26:8959–65.
    26. Pang M, Liu D, Lei Y, Song S, Feng J, Fan W, Zhang H. Rare-earth-doped bifunctional alkaline-earth metal fluoride nanocrystals via a facile microwave-assisted process. Inorg Chem. 2011;50:5327–9.
    27. Kamimura M, Miyamoto D, Saito Y, Soga K, Nagasaki Y. Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling. Langmuir. 2008;24:8864–70.
    28. Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem. 2009;81:8687–94.
    29. Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77:13–9.
    30. Hilderbrand SA, Shao F, Salthouse C, Mahmood U, Weissleder R. Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem Commun. 2009;28:4188–90.
    31. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008;8:3834–8.
    32. Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv Funct Mater. 2009;19:853–9.
    33. Chen G, Ohulchanskyy TY, Law WC, Agren H, Prasad PN. Monodisperse NaYbF4: Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale. 2011;3:2003–8.
    34. Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials. 2010;31:3287–95.
    35. Troyan SL, Kianzad V, Gibbs-Strauss SL, Gioux S, Matsui A, Oketokoun R, Ngo L, Khamene A, Azar F, Frangioni JV. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol. 2009;16:2943–52.
    36. Vahrmeijer AL, Frangioni JV. Seeing the invisible during surgery. Br J Surg. 2011;98:749–50.
    37. Soga K, Tokuzen K, Tsuji K, Yamano T, Hyodo H, Kishimoto H. NIR bioimaging: development of liposome-encapsulated, rare-earth-doped Y2O3 nanoparticles as fluorescent probes. Eur J Inorg Chem. 2010;18:2673–7.
    38. Hemmer E, Yamanao T, Kishimoto H, Soga K. Gadolinium-containing inorganic nanostructures for biomedical applications: cytotoxic aspects. In: IEEE Explore, proceedings of the international conference on nanoscience and nanotechnology (ICONN), Sydney, Australia; 2010. p. 225–9.
    39. Singh S, Bhat MK. Carboplatin induces apoptotic cell death through downregulation of constitutively active nuclear factor-jB in human HPV-18 E6-positive HEp-2 cells. Biochem Biophys Res Commun. 2004;318:346–53.
    40. Farrer RA, Butterfield FL, Chen VW, Fourkas JT. Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. Nano Lett. 2005;5:1139–42.
    41. Matijevic E, Hsu WP. Preparation and properties of monodispersed colloidal particles of lanthanide compounds. J Colloid Interface Sci. 1987;118:506–23.
    42. Park IY, Kim D, Lee J, Lee SH, Kim KJ. Effects of urea concentration and reaction temperature on morphology of gadolinium compounds prepared by homogeneous precipitation. Mater Chem Phys. 2007;106:149–57.
    43. Wang Y, Bai X, Liu T, Dong B, Xu L, Liu Q, Song H. Solvothermal synthesis and luminescence properties of monodisperse Gd2O3:Eu3+ and Gd2O3:Eu3+@SiO2 nanospheres. J Solid State Chem. 2010;183:2779–85.
    44. Mu Q, Chen T, Wang Y. Synthesis, characterization and photoluminescence of lanthanum hydroxide nanorods by a simple route at room temperature. Nanotechnology. 2009;20:345602.
    45. Lin S, Dong X, Jia R, Yuan Y. Controllable synthesis and luminescence property of LnPO4 (Ln = La, Gd, Y) nanocrystals. J Mater Sci Mater Electron. 2010;21:38–44.
    46. Du G, Van Tendeloo G. Preparation and structure analysis of Gd(OH)3 nanorods. Nanotechnology. 2005;16:595–7.
    47. Wang X, Li Y. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew Chem Int Ed. 2002;41:4790–3.
    48. Wang X, Li Y. Solution-based routes to transition-metal oxide one-dimensional nanostructures. Pure Appl Chem. 2006;78:45–64.
    49. Ma L, Chen WX, Zhao J, Zheng YF. Synthesis of Pr(OH)3 and Pr6O11 nanorods by microwave-assisted method: effects of concentration of alkali and microwave heating time. J Cryst Growth. 2007;303:590–6.
    50. Venkatachalam N, Saito Y, Soga K. Synthesis of Er3+ doped Y2O3 nanophosphors. J Am Ceram Soc. 2009;92:1006–10.
    51. Günther A, Bender P, Birringer R. Rotational diffusion of magnetic nickel nanorods in colloidal dispersions. J Phys Condens Matter. 2011;23:325103.
    52. Mahler H-C, Jiskoot W. Analysis of aggregates and particles in protein pharmaceuticals. Hoboken: Wiley; 2012. p. 44.
    53. Soga K, Okumura Y, Tsuji K, Venkatachalam N. Effect of K3PO4 addition as sintering inhibitor during calcination of Y2O3 nanoparticles. J Phys Conf Ser. 2009;191:012003.
    54. Wang X, Li Y. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. Chem Eur J. 2003;9:5627–35.
    55. Hemmer E, Yamano T, Kishimoto H, Soga K. Cytotoxicity of Gd2O3:Ln3+ nanostructures and their potential as biomarkers. In: Meyer G, editor. Proceedings of the 7th international conference on f elements, ICfE-7, Terrae Rarae; 2009. p. 1–10.
    56. Dong Y, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials. 2004;25:2843–9.
    57. Xie J, Xu C, Kohler N, Hou Y, Sun S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater. 2007;19:3163–6.
    58. Sheng Y, Yuan Y, Liu C, Tao X, Shan X, Xu F. In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. J Mater Sci Mater Med. 2009;20:188–891.
    59. Bazile D, Prud’Homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 1995;84:493–8.
    60. Wu H, Liu G, Zhuang Y, Wu D, Zhang H, Yang H, Hu H, Yang S. The behavior after intravenous injection in mice of multiwalled carbon nanotube/Fe3O4 hybrid MRI contrast agents. Biomaterials. 2011;32:4867–76.
    61. Al Faraj A, Fauvelle F, Luciani N, Lacroix G, Levy M, Crémillieux Y, Canet-Soulas E. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. Int J Nanomed. 2011;6:351–61.
    62. Tasciotti E, Godin B, Martinez JO, Chiappini C, Bhavane R, Liu X, Ferrari M. Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles. Mol Imaging. 2011;10:56–68.
    63. Gratton SEA, Williams S, Napier ME, Pohlhaus PD, Zhou Z, Wiles KB, Maynor BW, Shen C, Olafsen T, Samulski ET, DeSimone JM. The pursuit of a scalable nanofabrication platform for the use in material and life science applications. Acc Chem Res. 2008;41:1685–95.
    64. Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G. Kupffer cells are central in the removal of nanoparticles from the organism. Particle Fibre Toxicol. 2007;4:10.
    65. Kryza D, Taleb J, Janier M, Marmuse L, Miladi I, Bonazza P, Louis C, Perriat P, Roux S, Tillement O, Billotey C. Biodistribution study of nanometric hybrid gadolinium oxide particles as a multimodal SPECT/MR/optical imaging and theragnostic agent. Bioconjug Chem. 2011;22:1145–52.
    66. Tu C, Ma X, House A, Kauzlarich SM, Louie AY. PET imaging and biodistribution of silicon quantum dots in mice. ACS Med Chem Lett. 2011;2:285–8.
    67. Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm. 2007;342:215–21.
    68. Arnida, Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm. 2011;77:417–23.
  • 作者单位:1. Center for Technologies Against Cancer (CTC), Tokyo University of Science, 2669 Yamazaki, Chiba, 278-0022 Japan2. Division of Immunobiology, Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Chiba, 278-0022 Japan3. Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Chiba, 278-8510 Japan4. Department of Cell Biology & Applied Virology, Fraunhofer Institute for Biomedical Engineering, Ensheimer Stra?e 48, 66386 St. Ingbert, Germany
  • ISSN:1573-4838
文摘
The use of an “over 1000-nm near-infrared (NIR) in vivo fluorescence bioimaging” system based on lanthanide containing inorganic nanostructures emitting in the visible and NIR range under 980-nm excitation is proposed. It may overcome problems of currently used biomarkers including color fading, phototoxicity and scattering. Gd2O3:Er3+,Yb3+ nanoparticles and nanorods showing upconversion and NIR emission are synthesized and their cytotoxic behavior is investigated by incubation with B-cell hybridomas and macrophages. Surface modification with PEG-b-PAAc provides the necessary chemical durability reducing the release of toxic Gd3+ ions. NIR fluorescence microscopy is used to investigate the suitability of the nanostructures as NIR–NIR biomarkers. The in vitro uptake of bare and modified nanostructures by macrophages is investigated by confocal laser scanning microscopy. In vivo investigations revealed nanostructures in liver, lung, kidneys and spleen a few hours after injection into mice, while most of the nanostructures have been removed from the body after 24 h.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700