Loss of nonsense mediated decay suppresses mutations in Saccharomyces cerevisiae TRA1
详细信息    查看全文
  • 作者:Stephanie Kvas (1)
    Gregory B Gloor (1)
    Christopher J Brandl (1)
  • 关键词:Tra1 ; Yeast ; Nonsense mediated decay ; Upf1 ; Gene expression ; Second ; site suppression
  • 刊名:BMC Genetics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:13
  • 期:1
  • 全文大小:776KB
  • 参考文献:1. Grant PA, Schieltz D, Pray-Grant M, Yates JR, Workman JL: The ATM-related cofactor Tra1 is a component of the purified SAGA complex. / Mol Cell 1998, 2:863鈥?67. CrossRef
    2. Saleh A, Schieltz D, Ting N, McMahon SB, Litchfield DW, Yates JR, Lees-Miller S, Cole MD, Brandl CJ: Tra1p is a component of the yeast Ada.Spt transcriptional regulatory complexes. / J Biol Chem 1998, 273:26559鈥?6565. CrossRef
    3. Allard S, Utley RT, Savard J, Clarke A, Grant P, Brandl CJ, Pillus L, Workman JL, C么t茅 J: NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. / EMBO J 1999, 18:5108鈥?119. CrossRef
    4. Doyon Y, Selleck W, Lane WS, Tan S, C么t茅 J: Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. / Mol Cell Biol 2004, 24:1884鈥?896. CrossRef
    5. Rodriguez-Navarro S: Insights into SAGA function during gene expression. / EMBO Rep 2009, 10:843鈥?50. CrossRef
    6. Koutelou E, Hirsch CL, Dent SY: Multiple faces of the SAGA complex. / Curr Opin Cell Biol 2010, 22:374鈥?82. CrossRef
    7. Shevchenko A, Roguev A, Schaft D, Buchanan L, Habermann B, Sakalar C, Thomas H, Krogan NJ, Shevchenko A, Stewart AF: Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. / Genome Biol 2008, 9:R167. CrossRef
    8. McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD: The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. / Cell 1998, 94:363鈥?74. CrossRef
    9. Bhaumik SR, Raha T, Aiello DP, Green MR: In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. / Genes Dev 2004, 18:333鈥?43. CrossRef
    10. Brown CE, Howe L, Sousa K, Alley SC, Carrozza MJ, Tan S, Workman JL: Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. / Science 2001, 292:2333鈥?337. CrossRef
    11. Fishburn J, Mohibullah N, Hahn S: Function of a eukaryotic transcription activator during the transcription cycle. / Mol Cell 2005, 18:369鈥?78. CrossRef
    12. Reeves WM, Hahn S: Targets of the Gal4 transcription activator in functional transcription complexes. / Mol Cell Biol 2005, 25:9092鈥?102. CrossRef
    13. Helmlinger D, Marguerat S, Villen J, Swaney DL, Gygi SP, Bahler J, Winston F: Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. / EMBO J 2011, 30:2843鈥?852. CrossRef
    14. Abraham RT: PI 3-kinase related kinases: 'big' players in stress-induced signaling pathways. / DNA Repair (Amst) 2004, 3:883鈥?87. CrossRef
    15. Lovejoy CA, Cortez D: Common mechanisms of PIKK regulation. / DNA Repair (Amst) 2009, 8:1004鈥?008. CrossRef
    16. Lempiainen H, Halazonetis TD: Emerging common themes in regulation of PIKKs and PI3Ks. / EMBO J 2009, 28:3067鈥?073. CrossRef
    17. Mutiu AI, Hoke SM, Genereaux J, Hannam C, MacKenzie K, Jobin-Robitaille O, Guzzo J, C么t茅 J, Andrews B, Haniford DB, Brandl CJ: Structure/function analysis of the phosphatidylinositol-3-kinase domain of yeast tra1. / Genetics 2007, 177:151鈥?66. CrossRef
    18. Bosotti R, Isacchi A, Sonnhammer EL: FAT: a novel domain in PIK-related kinases. / Trends Biochem Sci 2000, 25:225鈥?27. CrossRef
    19. Perry J, Kleckner N: The ATRs, ATMs, and TORs are giant HEAT repeat proteins. / Cell 2003, 112:151鈥?55. CrossRef
    20. Sibanda BL, Chirgadze DY, Blundell TL: Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. / Nature 2010, 463:118鈥?21. CrossRef
    21. Knutson BA, Hahn S: Domains of TRA1 important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes. / Mol Cell Biol 2011, 31:818鈥?31. CrossRef
    22. Sun Y, Jiang X, Chen S, Fernandes N, Price BD: A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. / Proc Natl Acad Sci USA 2005, 102:13182鈥?3187. CrossRef
    23. Hoke SM, Mutiu AI, Genereaux J, Kvas S, Buck M, Yu M, Gloor GB, Brandl CJ: Mutational analysis of the C-terminal FATC domain of Saccharomyces cerevisiae Tra1. / Curr Genet 2010, 56:447鈥?65. CrossRef
    24. Morita T, Yamashita A, Kashima I, Ogata K, Ishiura S, Ohno S: Distant N- and C-terminal domains are required for intrinsic kinase activity of SMG-1, a critical component of nonsense-mediated mRNA decay. / J Biol Chem 2007, 282:7799鈥?808. CrossRef
    25. Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S: The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. / J Biol Chem 2005, 280:20558鈥?0564. CrossRef
    26. Nakada D, Hirano Y, Tanaka Y, Sugimoto K: Role of the C terminus of Mec1 checkpoint kinase in its localization to sites of DNA damage. / Mol Biol Cell 2005, 16:5227鈥?235. CrossRef
    27. Sun Y, Jiang X, Price BD: Tip60: connecting chromatin to DNA damage signaling. / Cell Cycle 2010, 9:930鈥?36. CrossRef
    28. Chang YF, Imam JS, Wilkinson MF: The nonsense-mediated decay RNA surveillance pathway. / Annu Rev Biochem 2007, 76:51鈥?4. CrossRef
    29. Muhlemann O, Eberle AB, Stalder L, Zamudio Orozco R: Recognition and elimination of nonsense mRNA. / Biochim Biophys Acta 2008, 1779:538鈥?49.
    30. Wang W, Czaplinski K, Rao Y, Peltz SW: The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. / EMBO J 2001, 20:880鈥?90. CrossRef
    31. Amrani N, Sachs MS, Jacobson A: Early nonsense: mRNA decay solves a translational problem. / Nat Rev Mol Cell Biol 2006, 7:415鈥?25. CrossRef
    32. Hu W, Petzold C, Coller J, Baker KE: Nonsense-mediated mRNA decapping occurs on polyribosomes in Saccharomyces cerevisiae. / Nat Struct Mol Biol 2010, 17:244鈥?47. CrossRef
    33. Brogna S, Wen J: Nonsense-mediated mRNA decay (NMD) mechanisms. / Nat Struct Mol Biol 2009, 16:107鈥?13. CrossRef
    34. Zhang S, Ruiz-Echevarria M, Quan Y, Peltz SW: Identification and characterization of a sequence motif involved in nonsense-mediated mRNA decay. / Mol Cell Biol 1995, 15:2231鈥?244.
    35. Wilusz CJ, Wang W, Peltz SW: Curbing the nonsense: the activation and regulation of mRNA surveillance. / Genes Dev 2001, 15:2781鈥?785.
    36. Mitchell P, Tollervey D: An NMD pathway in yeast involving accelerated deadenylation and exosome-eitd3'- > 5'degradation. / Mol Cell 2003, 11:1405鈥?413. CrossRef
    37. Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A: A faux3'-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. / Nature 2004, 432:112鈥?18. CrossRef
    38. Leeds P, Peltz SW, Jacobson A, Culbertson MR: The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. / Genes Dev 1991, 5:2303鈥?314. CrossRef
    39. Cui Y, Hagan KW, Zhang S, Peltz SW: Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. / Genes Dev 1995, 9:423鈥?36. CrossRef
    40. He F, Jacobson A: Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. / Genes Dev 1995, 9:437鈥?54. CrossRef
    41. Weng Y, Czaplinski K, Peltz SW: Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. / Mol Cell Biol 1996, 16:5477鈥?490.
    42. Maderazo AB, He F, Mangus DA, Jacobson A: Upf1p control of nonsense mRNA translation is regulated by Upf2p and Upf3p. / Mol Cell Biol 2000, 20:4591鈥?603. CrossRef
    43. Keeling KM, Lanier J, Du M, Salas-Marco J, Gao L, Kaenjak-Angeletti A, Bedwell DM: Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. / RNA 2004, 10:691鈥?03. CrossRef
    44. Czaplinski K, Weng Y, Hagan KW, Peltz SW: Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. / RNA 1995, 1:610鈥?23.
    45. Page MF, Carr B, Anders KR, Grimson A, Anderson P: SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. / Mol Cell Biol 1999, 19:5943鈥?951.
    46. Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S: Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. / Genes Dev 2001, 15:2215鈥?228. CrossRef
    47. Isken O, Maquat LE: The multiple lives of NMD factors: balancing roles in gene and genome regulation. / Nat Rev Genet 2008, 9:699鈥?12. CrossRef
    48. Lelivelt MJ, Culbertson MR: Yeast Upf proteins required for RNA surveillance affect global expression of the yeast transcriptome. / Mol Cell Biol 1999, 19:6710鈥?719.
    49. He F, Li X, Spatrick P, Casillo R, Dong S, Jacobson A: Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5' to 3' mRNA decay pathways in yeast. / Mol Cell 2003, 12:1439鈥?452. CrossRef
    50. Guan Q, Zheng W, Tang S, Liu X, Zinkel RA, Tsui KW, Yandell BS, Culbertson MR: Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast. / PLoS Genet 2006, 2:e203. CrossRef
    51. Johansson MJ, Jacobson A: Nonsense-mediated mRNA decay maintains translational fidelity by limiting magnesium uptake. / Genes Dev 2010, 24:1491鈥?495. CrossRef
    52. Welch EM, Jacobson A: An internal open reading frame triggers nonsense-mediated decay of the yeast SPT10 mRNA. / EMBO J 1999, 18:6134鈥?145. CrossRef
    53. Gaba A, Jacobson A, Sachs MS: Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense-mediated mRNA decay. / Mol Cell 2005, 20:449鈥?60. CrossRef
    54. Kebaara BW, Atkin AL: Long 3'-UTRs target wild-type mRNAs for nonsense-mediated mRNA decay in Saccharomyces cerevisiae. / Nucleic Acids Res 2009, 37:2771鈥?778. CrossRef
    55. Belew AT, Advani VM, Dinman JD: Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast. / Nucleic Acids Res 2011, 39:2799鈥?808. CrossRef
    56. Lin YY, Qi Y, Lu JY, Pan X, Yuan DS, Zhao Y, Bader JS, Boeke JD: A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. / Genes Dev 2008, 22:2062鈥?074. CrossRef
    57. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C: The genetic landscape of a cell. / Science 2010, 327:425鈥?31. CrossRef
    58. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G: Proteome survey reveals modularity of the yeast cell machinery. / Nature 2006, 440:631鈥?36. CrossRef
    59. Denning G, Jamieson L, Maquat LE, Thompson EA, Fields AP: Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. / J Biol Chem 2001, 276:22709鈥?2714. CrossRef
    60. Gonzalez CI, Bhattacharya A, Wang W, Peltz SW: Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. / Gene 2001, 274:15鈥?5. CrossRef
    61. Penheiter KL, Washburn TM, Porter SE, Hoffman MG, Jaehning JA: A posttranscriptional role for the yeast Paf1-RNA polymerase II complex is revealed by identification of primary targets. / Mol Cell 2005, 20:213鈥?23. CrossRef
    62. Wilmes GM, Bergkessel M, Bandyopadhyay S, Shales M, Braberg H, Cagney G, Collins SR, Whitworth GB, Kress TL, Weissman JS, Ideker T, Guthrie C, Krogan NJ: A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. / Mol Cell 2008, 32:735鈥?46. CrossRef
    63. Kuperwasser N, Brogna S, Dower K, Rosbash M: Nonsense-mediated decay does not occur within the yeast nucleus. / RNA 2004, 10:1907鈥?915. CrossRef
    64. Segref A, Sharma K, Doye V, Hellwig A, Huber J, Luhrmann R, Hurt E: Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A) + RNA and nuclear pores. / EMBO J 1997, 16:3256鈥?271. CrossRef
    65. Stirling PC, Bloom MS, Solanki-Patil T, Smith S, Sipahimalani P, Li Z, Kofoed M, Ben-Aroya S, Myung K, Hieter P: The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. / PLoS Genet 2011, 7:e1002057. CrossRef
    66. Chen W, Struhl K: Saturation mutagenesis of a yeast his3 TATA element: genetic evidence for a specific TATA-binding protein. / Proc Natl Acad Sci USA 1988, 85:2691鈥?695. CrossRef
    67. Gietz RD, Sugino A: New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. / Gene 1988, 74:527鈥?34. CrossRef
    68. Cross FR: 'Marker swap' plasmids: convenient tools for budding yeast molecular genetics. / Yeast 1997, 13:647鈥?53. CrossRef
    69. Hoke SM, Guzzo J, Andrews B, Brandl CJ: Systematic genetic array analysis links the Saccharomyces cerevisiae SAGA/SLIK and NuA4 component TRA1 to multiple cellular processes. / BMC Genet 2008, 9:46. CrossRef
    70. Winzeler EA, Davis RW: Functional analysis of the yeast genome. / Curr Opin Genet Dev 1997, 7:771鈥?76. CrossRef
    71. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Pag茅 N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C: Systematic genetic analysis with ordered arrays of yeast deletion mutants. / Science 2001, 294:2364鈥?368. CrossRef
    72. Brandl CJ, Furlanetto AM, Martens JA, Hamilton KS: Characterization of NGG1, a novel yeast gene required for glucose repression of GAL4p-regulated transcription. / EMBO J 1993, 12:5255鈥?265.
    73. Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K: / Current Protocols in Molecular Biology. New York: John Wiley & Sons, Inc; 1988.
    74. Saccharomyces Genome Database [http://www.yeastgenome.org/]
    75. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. / Genome Biol 2009, 10:R25. CrossRef
    76. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: 1000 genome project data processing subgroup: the sequence alignment/map format and SAMtools. / Bioinformatics 2009, 25:2078鈥?079. CrossRef
  • 作者单位:Stephanie Kvas (1)
    Gregory B Gloor (1)
    Christopher J Brandl (1)

    1. Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, N6A5C1, Canada
文摘
Background Tra1 is an essential protein in Saccharomyces cerevisiae. It was first identified in the SAGA and NuA4 complexes, both with functions in multiple aspects of gene regulation and DNA repair, and recently found in the ASTRA complex. Tra1 belongs to the PIKK family of proteins with a C-terminal PI3K domain followed by a FATC domain. Previously we found that mutation of leucine to alanine at position 3733 in the FATC domain of Tra1 (tra1-L3733A) results in transcriptional changes and slow growth under conditions of stress. To further define the regulatory interactions of Tra1 we isolated extragenic suppressors of the tra1-L3733A allele. Results We screened for suppressors of the ethanol sensitivity caused by tra1-L3733A. Eleven extragenic recessive mutations, belonging to three complementation groups, were identified that partially suppressed a subset of the phenotypes caused by tra1-L3733A. Using whole genome sequencing we identified one of the mutations as an opal mutation at tryptophan 165 of UPF1/NAM7. Partial suppression of the transcriptional defect resulting from tra1-L3733A was observed at GAL10, but not at PHO5. Suppression was due to loss of nonsense mediated decay (NMD) since deletion of any one of the three NMD surveillance components (upf1/nam7, upf2/nmd2, or upf3) mediated the effect. Deletion of upf1 suppressed a second FATC domain mutation, tra1-F3744A, as well as a mutation to the PIK3 domain. In contrast, deletions of SAGA or NuA4 components were not suppressed. Conclusions We have demonstrated a genetic interaction between TRA1 and genes of the NMD pathway. The suppression is specific for mutations in TRA1. Since NMD and Tra1 generally act reciprocally to control gene expression, and the FATC domain mutations do not directly affect NMD, we suggest that suppression occurs as the result of overlap and/or crosstalk in these two broad regulatory networks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700