On the stability of magmatic cordierite and new thermobarometric equations for cordierite-saturated liquids
详细信息    查看全文
  • 作者:Filippo Ridolfi (1)
    Alberto Renzulli (1)
    Antonio Acosta-Vigil (2)
  • 关键词:Cordierite structure ; Glass structure ; Aluminium saturation ; P–T–X relationships ; Thermobarometry ; Crustal anatexis
  • 刊名:Contributions to Mineralogy and Petrology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:167
  • 期:4
  • 全文大小:1,562 KB
  • 参考文献:1. Acosta-Vigil A, London D, Morgan GBVI, Dewers TA (2003) Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700-00°C and 200?MPa, and applications of the aluminium saturation index. Contrib Mineral Petrol 146:100-19 CrossRef
    2. Acosta-Vigil A, Cesare B, London D, Morgan GBVI (2007) Microstructures and composition of melt inclusions in a crustal anatectic environment, represented by metapelitic enclaves within El Hoyazo dacites, SE Spain. Chem Geol 237:450-65 CrossRef
    3. Albertini G, Calbucci V, Cardone F, Petrucci A, Ridolfi F (2013) Chemical changes induced by ultrasounds in iron. Appl Phys A 14. doi:10.1007/s00339-013-7876-z
    4. álvarez-Valero AM, Cesare B, Kriegsman LM (2007) Formation of spinel–cordierite–feldspar–glass coronas after garnet in metapelitic xenoliths: reaction modelling and geodynamic implications. J Metamorph Geol 25:305-20 CrossRef
    5. Bédard JH (2007) Trace element partitioning between silicate melts and orthopyroxene: parameterizations of D variations. Chem Geol 244:263-03 CrossRef
    6. Blundy J, Cashman KV, Berlo K (2008) Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980-986 and current eruptions. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-006, chap 33. US Geological Survey Professional Paper 2007-008, p 35
    7. Bouhifd MA, Whittington AG, Withers AC, Richet P (2013) Heat capacities of hydrous silicate glasses and liquids. Chem Geol 346:125-34 CrossRef
    8. Buick IS, Stevens G, Gibson RL (2004) The role of water retention in the anatexis of metapelites in the Bushveld Complex Aureole, South Africa: an experimental study. J Petrol 45:1777-797 CrossRef
    9. Bulbak TA, Shvedenkova SV (2011) Solid solutions of (Mg, Fe2+)-cordierite: synthesis, water content, and magnetic properties. Geochem Int 4:391-06 CrossRef
    10. Burnham CW (1994) Development of the Burnham Model for prediction of H2O solubility in magmas. Rev Mineral 30:123-29
    11. Carrington DP, Harley SL (1995) Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the KFMASH system. Contrib Mineral Petrol 120:270-91 CrossRef
    12. Carrington DP, Watt GR (1995) A geochemical and experimental study of the role of K-feldspar during water-undersaturated melting of metapelites. Chem Geol 122:59-6 CrossRef
    13. Cesare B (2000) Incongruent melting of biotite to spinel in a quartz-free restite at El Joyazo (SE Spain): textures and reaction characterization. Contrib Mineral Petrol 139:273-84 CrossRef
    14. Cesare B, Salvioli-Mariani E, Venturelli G (1997) Crustal anatexis and melt extraction during deformation in the restitic xenoliths at El Joyazo (SE Spain). Mineral Mag 61:15-7 CrossRef
    15. Cesare B, Gomez-Pugnaire MT, Rubatto D (2003) Residence time of S-type anatectic magmas beneath the Neogene Volcanic Province of SE Spain: a zircon and monazite SHRIMP study. Contrib Mineral Petrol 146:28-3 CrossRef
    16. Cesare B, Meli S, Nodari L, Russo U (2005) Fe3+ reduction during biotite melting in graphitic metapelites: another origin of CO2 in granulites. Contrib Mineral Petrol 149:129-40 CrossRef
    17. Cesare B, Maineri C, Baron-Toaldo A, Pedron D, Acosta-Vigil A (2007) Immiscibility between carbonic fluids and granitic melts during crustal anatexis: a fluid and melt inclusion study in the enclaves of the Neogene Volcanic Province of SE Spain. Chem Geol 237:433-49 CrossRef
    18. Chappell BW (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46:535-51 CrossRef
    19. Clarke DB (1995) Cordierite in felsic igneous rocks: a synthesis. Mineral Mag 59:311-25 CrossRef
    20. Clemens JD, Vielzeuf D (1987) Constraints on melting of magma production in the crust. Earth Planet Sci Lett 86:287-06 CrossRef
    21. Coombs DS (1954) Ferriferrous orthoclase from Madagascar. Mineral Mag 30:409-27 CrossRef
    22. Del Moro S, Renzulli A, Tribaudino M (2011) Pyrometamorphic processes at the magma-hydrothermal system interface of active volcanoes: evidence from buchite ejecta of Stromboli (Aeolian Islands, Italy). J Petrol 52:541-64 CrossRef
    23. Del Moro S, Renzulli A, Landi P, La Felice S, Rosi M (2013) Unusual lapilli tuff ejecta erupted at Stromboli during the 15 March 2007 explosion shed light on the nature and thermal state of rocks forming the crater system of the volcano. J Volcanol Geotherm Res 254:37-2 CrossRef
    24. Della Ventura G, Bellatreccia F, Cesare B, Harley S, Piccinini M (2009) FTIR microspectroscopy and SIMS study of water-poor cordierite from El Hoyazo, Spain: application to mineral and melt devolatilization. Lithos 113:498-06 CrossRef
    25. Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319-28
    26. Di Martino C, Forni F, Frezzotti ML, Palmeri R, Webster JD, Ayuso RA, Lucchi F, Tranne CA (2011) Formation of cordierite-bearing lavas during anatexis in the lower crust beneath Lipari Island (Aeolian arc, Italy). Contrib Mineral Petrol 162:1011-030 CrossRef
    27. Dini A, Gianelli G, Puxeddu M, Ruggieri G (2005) Origin and evolution of Pliocene–Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos 81:1-1 CrossRef
    28. Dubinsky EV, Stebbins JF (2006) Quench rate and temperature effects on framework ordering in aluminosilicate melts. Am Mineral 91:753-61 CrossRef
    29. Erdmann S, London D, Morgan VIGB, Clarke DB (2007) The contamination of granitic magma by metasedimentary country-rock material: an experimental study. Can Mineral 45:43-1 CrossRef
    30. Feldstein SN, Halliday AN, Davies GR, Hall CM (1994) Isotope and chemical microsampling: constraints on the history of an S-type rhyolite, San Vincenzo, Tuscany, Italy. Geochim Cosmochim Acta 58:943-58 CrossRef
    31. Ferrara G, Petrini R, Serri G, Tonarini S (1989) Petrology and isotope-geochemistry of San Vincenzo rhyolites (Tuscany, Italy). Bull Volcanol 51:379-88 CrossRef
    32. Geiger CA, Grams M (2003) Cordierite IV: structural heterogeneity and energetics of Mg–Fe solid solutions. Contrib Mineral Petrol 145:752-64 CrossRef
    33. Geiger CA, Rager H, Czank M (2000) Cordierite III: the coordination and concentration of Fe3+. Contrib Mineral Petrol 140:344-52 CrossRef
    34. Harangi SZ, Downes H, Kósa L, Szabó CS, Thirlwall ME, Mason PRD, Mattey D (2001) Almandine Garnet in calc-alkaline volcanic rocks of the Northern Pannonian Basin (Eastern-Central Europe): geochemistry, Petrogenesis and Geodynamic implications. J Petrol 42:1813-843 CrossRef
    35. Harley SL, Carrington DP (2001) The distribution of H2O between cordierite and granitic melt: improved calibration of H2O incorporation in cordierite and its application to high-grade metamorphism and crustal anatexis. J Petrol 42:1595-620 CrossRef
    36. Harley SL, Thompson P (2004) The influence of cordierite on melting and mineral-melt equilibria in ultra-high-temperature metamorphism. Trans R Soc Edinb Earth Sci 95:87-8 CrossRef
    37. Harley SL, Thompson P, Hensen BJ, Buick IS (2002) Cordierite as a sensor of fluid conditions in high-grade metamorphism and crustal anatexis. J Metamorph Geol 20:71-6 CrossRef
    38. Harlov D, Renzulli A, Ridolfi F (2006) Iron-bearing chlor-fluorapatites in crustal xenoliths from the Stromboli volcano (Aeolian Islands, southern Italy); an indicator of fluid processes during contact metamorphism. Eur J Mineral 18:233-41 CrossRef
    39. Hofmeister AM, Rossman GR (1984) Determination of Fe3+ and Fe2+ concentrations in feldspar by optical absorption and EPR spectroscopy. Phys Chem Miner 11:213-24 CrossRef
    40. Holtz F, Johannes W (1991) Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5?kb and various H2O activities. J Petrol 32:935-58 CrossRef
    41. Holtz F, Johannes W, Pichavant M (1992) Effect of excess aluminium on the phase relations in the system Qz–Ab–Or: experimental investigation at 2 kbar and reduced H2O-activity. Eur J Mineral 4:137-52
    42. Holtz F, Johannes W, Tannic N, Behrens H (2001) Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications. Lithos 56:1-4 CrossRef
    43. Holtz F, Sato H, Lewis J, Behrens H, Nakada S (2005) Experimental petrology of the 1991-995 Unzen dacite, Japan. Part I: phase relations, phase composition and pre-eruptive conditions. J Petrol 46:319-37 CrossRef
    44. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4:43-7 CrossRef
    45. Jayasuriya KD, O’Neill HSC, Berry AJ, Campbell SJ (2004) A M?ssbauer study of the oxidation state of Fe in silicate melts. Am Mineral 89:1597-609
    46. Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin, 335 pp
    47. Johnson K, Barnes CG, Miller CA (1997) Petrology, geochemistry, and genesis of high-Al tonalite and trondhjemites of the Cornucopia stock, Blue Mountains, Northeastern Oregon. J Petrol 38:1585-611 CrossRef
    48. Lee C-TA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279:20-3 CrossRef
    49. Macdowell JF, Beall GH (1969) Immiscibility and crystallization in A12O3–SiO2 glasses. J Am Ceram Soc 52:17-5 CrossRef
    50. Mollo S, Putirka K, Iezzi G, Del Gaudio P, Scarlato P (2011) Plagioclase–melt (dis)equilibrium due to cooling dynamics: implications for thermometry, barometry and hygrometry. Lithos 125:221-35 CrossRef
    51. Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes, part II. Compositions of minerals and melts. Contrib Mineral Petrol 128:176-96 CrossRef
    52. Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36-2
    53. Morgan GB, London D (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am Mineral 81:1176-185
    54. Morgan GB, London D (2005) Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. Am Mineral 90:1131-138 CrossRef
    55. Morgan GB, London D, Luedke RG (1998) Petrochemistry of late Miocene peraluminous silicic volcanic rocks from the Morococala field, Bolivia. J Petrol 39:601-32 CrossRef
    56. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O?+?CO2 fluids in silicate melts. Chem Geol 229:78-5 CrossRef
    57. Pati?o Douce AE (1992) Calculated relationships between activity of alumina and phase assemblages of silica-saturated igneous rocks: petrogenetic implications of magmatic cordierite, garnet and aluminosilicate. J Volcanol Geotherm Res 52:43-3 CrossRef
    58. Pati?o Douce AE, Beard JD (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36:707-38 CrossRef
    59. Pinarelli L, Poli G, Santo AP (1989) Geochemical characterization of recent volcanism from the Tuscan magmatic province (Central Italy): the Roccastrada and San Vincenzo centers. Period Mineral 58:67-6
    60. Poli G, Perugini D (2003) San Vincenzo volcanites. Period Mineral 72:141-55
    61. Pruseth KL (2009) MATNORM: calculating NORM using composition matrices. Comput Geosci 35:1785-788 CrossRef
    62. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61-20 CrossRef
    63. Renzulli A, Tribaudino M, Salvioli-Mariani E, Serri G, Holm PM (2003) Cordierite–anorthoclase hornfels xenoliths in Stromboli lavas (Aeolian Islands, Sicily) an example of a fast cooled contact aureole. Eur J Mineral 15:665-79 CrossRef
    64. Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contrib Mineral Petrol 163:877-95 CrossRef
    65. Ridolfi F, Puerini M, Renzulli A, Menna M, Toulkeridis T (2008) The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. J Volcanol Geotherm Res 176:94-06 CrossRef
    66. Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45-6 CrossRef
    67. Ridolfi F, Cardone F, Albertini G (2013) Ultrasonic damages in iron. J Adv Phys 2:40-4 CrossRef
    68. Rigby MJ, Droop GTR, Bromiley GD (2008) Variations in fluid activity across the Etive thermal aureole, Scotland: evidence from cordierite volatile contents. J Metamorph Geol 26:331-46 CrossRef
    69. Risbud SH, Pask JA (1977) Calculated thermodynamic data and metastable immiscibility in the system SiO2–Al2O3. J Am Ceram Soc 60:418-24 CrossRef
    70. Roedder E (1984) Fluid inclusions. Rev Mineral 14:620
    71. Salvioli-Mariani E, Renzulli A, Serri G, Holm PM, Toscani L (2005) Glass-bearing crustal xenoliths (buchites) erupted during the recent activity of Stromboli (Aeolian Islands). Lithos 81:255-77 CrossRef
    72. Schiano P, Bourdon R (1999) On the preservation of mantle information in ultramafic nodules: glass inclusions within minerals versus interstitial glasses. Earth Planet Sci Lett 169:173-88 CrossRef
    73. Stebbins JF, Wu J, Thompson LM (2013) Interactions between network cation coordination and non-bridging oxygen abundance in oxide glasses and melts: insights from NMR spectroscopy. Chem Geol 346:34-6 CrossRef
    74. Stevens G, Clemens JD, Droop GTR (1995) Hydrous cordierite in granulites and crustal magma production. Geology 23:925-28 CrossRef
    75. Taj?manová L, Connolly JAD, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. J Metamorph Geol 27:153-65 CrossRef
    76. Thompson LM, Stebbins JF (2011) Non-bridging oxygen and high-coordinated aluminium in metaluminous and peraluminous calcium and potassium aluminosilicate glasses: high-resolution 17O and 27Al MAS NMR results. Am Mineral 96:841-53 CrossRef
    77. Veksler IV (2004) Liquid immiscibility and its role at the magmatic–hydrothermal transition: a summary of experimental studies. Chem Geol 210:7-1 CrossRef
    78. Ward R, Stevens G, Kisters A (2008) Fluid and deformation induced partial melting and melt volumes in low-temperature granulite-facies metasediments, Damara Belt, Namibia. Lithos 105:253-71 CrossRef
    79. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185-87 CrossRef
    80. Wood MI, Hess PC (1980) The structural role of Al2O3 and TiO2 in immiscible silicate liquids in the system SiO2–MgO–CaO–FeO–TiO2–Al2O3. Contrib Mineral Petrol 72:319-28 CrossRef
    81. Yakubovich OV, Massa W, Pekov IV, Gavrilenko PG (2004) Crystal chemical features in a cordierite–sekaninaite series of micro-porous minerals. In: Invidia L (ed) Micro-and mesoporous mineral phases. INFN-SIS, Frascati, p 324
  • 作者单位:Filippo Ridolfi (1)
    Alberto Renzulli (1)
    Antonio Acosta-Vigil (2)

    1. Dipartimento di Scienze della Terra, della Vita e dell’Ambiente, Università degli Studi di Urbino “Carlo Bo- Campus Scientifico “Enrico Mattei- 61029, Urbino, Italy
    2. Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Avenida de las Palmeras 4, 18100, Armilla, Granada, Spain
  • ISSN:1432-0967
文摘
In this work, we have reviewed a large compositional dataset (571 analyses) for natural and experimental glasses to understand the physico-chemical and compositional conditions of magmatic cordierite crystallization. Cordierite crystallizes in peraluminous liquids (A/CNK ?) at temperatures ?50?°C, pressures ?00?MPa, variable H2O activity (0.1-.0) and relatively low fO2 conditions (≤NNO???.5). In addition to A/CNK ratio ?, a required condition for cordierite crystallization is a Si?+?Al cation value of the rhyolite liquid of 4 p8O (i.e. calculated on the 8 oxygen anhydrous basis), which is consistent with low Fe3+ contents and the absence or low content of non-bridging oxygens (NBO). This geochemical condition is strongly supported by the rare, if not unique, structure of cordierite where the tetrahedral framework is composed almost exclusively of Si and Al cations the sum of which is equal to 4 p8O?[i.e. (Mg,Fe)8/9Al16/9Si20/9O8], indicating that aluminium (and cordierite) saturation is limited by rhyolite liquids with Al?=?4???Si. Indeed, synthetic or natural systems with Al?>?4???Si always show metastable glass-in-glass separation or crystallization of refractory minerals such as corundum (Al16/3O8) and aluminosilicates (Al16/5Si8/5O8). Multivariate regression analyses of literature data for experimental glasses coexisting with magmatic cordierite produced two empirical equations to independently calculate the T (±13?°C; ME, maximum error?=?29?°C) and P (±16?%; ME%?=?27?%) conditions of cordierite saturation. The greatest influence on the two equations is exerted by H2Omelt and Al concentrations, respectively. Testing of these equations with other thermobarometric constraints (e.g. feldspar-liquid, GASP, Grt–Bt and Grt–Crd equilibria) and thermodynamic models (NCKFMASHTO and NCKFMASH systems) was successfully performed for Crd-bearing rhyolites and residual enclaves from San Vincenzo (Tuscany, Italy), Morococala Field (Bolivia) and El Hoyazo (Spain). The reliability of each calculated P-em class="a-plus-plus">T pair was graphically evaluated using the minimum and maximum P-em class="a-plus-plus">T–H2O relationships for peraluminous rhyolite liquids modified after the metaluminous relationships in this work. Both P-em class="a-plus-plus">T calculations and checking can be easily performed with the attached user-friendly spreadsheet (i.e. Crd-sat_TB).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700