bat2 and the ?em class="a-plus-plus">hom2-?em class="a-plus-plus">aad6 strain revealing the greatest impact. BAT2 is the dominant gene in these deletion strains and this suggests the initial transaminase step of the Ehrlich pathway is rate-limiting. The triple-deletion strains in combination with BAT2 (?em class="a-plus-plus">bat2-?em class="a-plus-plus">thi3-?em class="a-plus-plus">aad6 and ?em class="a-plus-plus">bat2-?em class="a-plus-plus">thi3-?em class="a-plus-plus">hom2) had the greatest impact on the end metabolite production with the exception of isoamyl alcohol and isovaleric acid. The strain deleted for two dehydrogenases and a reductase (?em class="a-plus-plus">hom2-?em class="a-plus-plus">pro2-?em class="a-plus-plus">aad6) had a greater effect on the levels of these two compounds. This study contributes to the elucidation of the Ehrlich pathway and its significance for aroma production by fermenting yeast cells." />
Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae
详细信息    查看全文
  • 作者:Gustav Styger (1)
    Dan Jacobson (1)
    Bernard A. Prior (1)
    Florian F. Bauer (1)
  • 关键词:Ehrlich pathway ; Yeast ; Aroma compounds ; Deletion mutants
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:97
  • 期:10
  • 页码:4429-4442
  • 全文大小:877KB
  • 参考文献:1. Abe F, Horikoshi K (2005) Enhanced production of isoamyl alcohol and isoamyl acetate by ubiquitination-deficient / Saccharomyces cerevisiae mutants. Cell Mol Biol Lett 10:383-88
    2. Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by / GPD1 and / GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179-187 CrossRef
    3. Antonelli A, Castellari L, Zambonelli C, Carnacini A (1999) Yeast influence on volatile composition of wines. J Agric Food Chem 47:1139-144 CrossRef
    4. Ard? Y (2006) Flavour formation by amino acid catabolism. Biotechnol Adv 24:238-42 CrossRef
    5. Arevalo-Rodriguez M, Pan X, Boeke JD, Heitman J (2004) FKBP12 controls aspartate pathway flux in / Saccharomyces cerevisiae to prevent toxic intermediate accumulation. Eukaryot Cell 3:1287-296 CrossRef
    6. Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (eds) (2003) Current protocols in molecular biology. Wiley, New York, NY
    7. Bakker BM, Bro C, K?tter P, Luttik MA, van Dijken JP, Pronk JT (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in / Saccharomyces cerevisiae. J Bacteriol 182:4730-737 CrossRef
    8. Bakker BM, Overkamp KM, van Maris AJ, K?tter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in / Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15-7 CrossRef
    9. Berben G, Dumont J, Gilliquet V, Bolle PA, Hilger F (1991) The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for / Saccharomyces cerevisiae. Yeast 7:475-77 CrossRef
    10. Boulton R, Singleton V, Bisson L, Kunkee R (1995) Principles and practices of winemaking. Chapman Hall, New York, NY
    11. Brandriss M (1979) Isolation and preliminary characterization of / Saccharomyces cerevisiae proline auxotrophs. J Bacteriol 138:816-22
    12. Chen EC-H (1977) The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols. J Am Soc Brew Chem 36:39-3
    13. Delneri D, Gardner DC, Oliver SG (1999) Analysis of the seven-member AAD gene set demonstrates that genetic redundancy in yeast may be more apparent than real. Genetics 153:1591-600
    14. De Smidt O, du Preez JC, Albertyn J (2008) The alcohol dehydrogenases of / Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res 8:967-78 CrossRef
    15. Dickinson JR, Harrison SJ, Hewlins MJ (1998) An investigation of the metabolism of valine to isobutyl alcohol in / Saccharomyces cerevisiae. J Biol Chem 273:25751-5756 CrossRef
    16. Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJE (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in / Saccharomyces cerevisiae. J Biol Chem 272:26871-6878 CrossRef
    17. Dickinson JR, Norte V (1993) A study of branched-chain amino acid aminotransferase and isolation of mutations affecting the catabolism of branched-chain amino acids in / Saccharomyces cerevisiae. FEBS Lett 326:29-2 CrossRef
    18. Dickinson JR, Salgado L, Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in / Saccharomyces cerevisiae. J Biol Chem 278:8028-034 CrossRef
    19. Eden A, Simchen G, Benvenisty N (1996) Two yeast homologs of / ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branch-chain amino acid transferases. J Biol Chem 271:20242-0245 CrossRef
    20. Fonzi WA, Sypherd PS (1987) The gene and the primary structure of ornithine decarboxylase from / Saccharomyces cerevisiae. J Biol Chem 262:10127-0133
    21. Hazelwood L, Daran JM, Van Maris AJ, Pronk JT, Dickinson JA (2008) The Ehrlich pathway for fusel alcohol production: a century of research on / Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259-266 CrossRef
    22. Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast / Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385:201-19 CrossRef
    23. Kispal G, Steiner H, Court DA, Rolinski B, Lill R (1996) Mitochondrial and cytosolic branched-chain amino acid transferases from yeast homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 271:24458-4464 CrossRef
    24. Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma. S Afr J Enol Vitic 21:97-29
    25. Larsson S, Nilvebrant NO, J?nsson LJ (2001) Effect of overexpression of / Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl Microbiol Biotechnol 57:167-74
    26. Lee S-J, Rathbone D, Asimont S, Adden R, Ebeler S (2004) Dynamic changes in ester formation during chardonnay juice fermentations with different yeast inoculation and initial Brix conditions. Amer J Enol Vitic 55:346-54
    27. Lilly M, Bauer FF, Styger G, Lambrechts MG, Pretorius IS (2006) The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res 6:726-43 CrossRef
    28. Majdak A, Herjavec S, Orlic S, Redzepovic S, Mirosevic N (2002) Comparison of wine aroma compounds produced by / Saccharomyces paradoxus and / Saccharomyces cerevisiae strains. Food Technol Biotechnol 40:103-09
    29. McNemar MD, Gorman JA, Buckley HR (1997) Isolation and sequence of the gene encoding ornithine decarboxylase, / SPE1, from / Candida albicans by complementation of a / speΔ strain of / Saccharomyces cerevisiae. Yeast 13:1383-389 CrossRef
    30. Mojzita D, Hohmann S (2006) Pdc2 coordinates expression of the / THI regulon in the yeast / Saccharomyces cerevisiae. Mol Genet Genomics 276:147-61 CrossRef
    31. Nishimura H, Kawasaki Y, Kaneko Y, Nosaka K, Iwashima A (1992) A positive regulatory gene, / THI3, is required for thiamine metabolism in / Saccharomyces cerevisiae. J Bacteriol 174:4701-706
    32. Nosaka K, Onozuka M, Konno M, Akaji K (2008) Thiamin-dependent transactivation activity of / PDC2 in / Saccharomyces cerevisiae. FEBS Lett 582:3991-996 CrossRef
    33. Quilter M, Hurley J, Lynch F, Murphy M (2003) The production of isoamyl acetate from amyl alcohol by / Saccharomyces cerevisiae. J Inst Brew 109:34-0 CrossRef
    34. Overkamp KM, Bakker BM, K?tter P, van Tuijl A, de Vries S, van Dijken JP, Pronk JT (2000) / In vivo analysis of the mechanisms for oxidation of cytosolic NADH by / Saccharomyces cerevisiae mitochondria. J Bacteriol 182:2823-830 CrossRef
    35. Pretorius IS, Bauer FF (2002) Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotech 20:426-32 CrossRef
    36. Romano P, Fiore C, Paraggio M, Caruso M, Capece A (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86:169-80 CrossRef
    37. Rossouw D, Naes T, Bauer FF (2008) Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. BMC Genomics 9:530 CrossRef
    38. Saito K, Thiele DJ, Davio M, Lockridge O, Massey V (1991) The cloning and expression of a gene encoding Old Yellow Enzyme from / Saccharomyces carlsbergensis. J Biol Chem 266:20720-0724
    39. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    40. Smit A, Cordero Otero RR, Lambrechts MG, Pretorius IS, Van Rensburg P (2003) Enhancing volatile phenol concentrations in wine by expressing various phenolic acid decarboxylase genes in / Saccharomyces cerevisiae. J Agric Food Chem 51:4909-915 CrossRef
    41. Spector D, Labarre J, Toledano MB (2001) A genetic investigation of the essential role of glutathione: mutations in the proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast. J Biol Chem 276:7001-016 CrossRef
    42. Styger G, Jacobson D, Bauer FF (2011) Identifying genes that impact on aroma profiles produced by / Saccharomyces cerevisiae and the production of higher alcohols. Appl Microbiol Biotechnol 91:713-30 CrossRef
    43. Tehlivets O, Scheuringer K, Kohlwein SD (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255-70 CrossRef
    44. Thierry A, Maillard M-B, Yvon M (2002) Conversion of l -leucine to isovaleric acid by / Propionibacterium freudenreichii TL 34 and ITGP23. Appl Environ Microbiol 68:608-15 CrossRef
    45. Thomas D, Surdin-Kerjan Y (1991) The synthesis of the two S-adenosyl-methionine synthetases is differently regulated in / Saccharomyces cerevisiae. Mol Gen Genet 226:224-32 CrossRef
    46. Trotter EW, Collinson EJ, Dawes IW, Grant CM (2006) Old yellow enzymes protect against acrolein toxicity in the yeast / Saccharomyces cerevisiae. Appl Environ Microbiol 72:4885-892 CrossRef
    47. Van Dijken JP, Scheffers W (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199-24
    48. Vanderhaegen B, Neven H, Coghe S, Verstrepen K, Verachtert H, Derdelinckx G (2003) Evolution of chemical and sensory properties during aging of top-fermented beer. J Agric Food Chem 51:6782-790 CrossRef
    49. Vidrih R, Hribar J (1999) Synthesis of higher alcohols during cider processing. Food Chem 67:287-94 CrossRef
    50. Volbrecht D, Radler F (1973) Formation of higher alcohols by amino acid deficient mutants of / Saccharomyces cerevisiae. I. The decomposition of amino acids to higher alcohols. Arch Mikrobiol 94:351-58 CrossRef
    51. Winston F, Dollard C, Ricupero-Hovasse S (1995) Construction of a set of convenient / Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53-5 CrossRef
    52. Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB (2002) Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 27:139-47 CrossRef
    53. Yoshimoto H, Fukushige T, Yonezawa T, Sone H (2002) Genetic and physiological analysis of branched-chain alcohols and isoamyl acetate production in / Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:501-08 CrossRef
  • 作者单位:Gustav Styger (1)
    Dan Jacobson (1)
    Bernard A. Prior (1)
    Florian F. Bauer (1)

    1. Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, 7600, South Africa
  • ISSN:1432-0614
文摘
During alcoholic fermentation, higher alcohols, esters, and acids are formed from amino acids via the Ehrlich pathway by yeast, but many of the genes encoding the enzymes have not yet been identified. When the BAT1/2 genes, encoding transaminases that deaminate amino acids in the first step of the Ehrlich pathway are deleted, higher metabolite formation is significantly decreased. Screening yeast strains with deletions of genes encoding decarboxylases, dehydrogenases, and reductases revealed nine genes whose absence had the most significant impact on higher alcohol production. The seven most promising genes (AAD6, BAT2, HOM2, PAD1, PRO2, SPE1, and THI3) were further investigated by constructing double- and triple-deletion mutants. All double-deletion strains showed a greater decrease in isobutanol, isoamyl alcohol, isobutyric, and isovaleric acid production than the corresponding single deletion strains with the double-deletion strains in combination with ?em class="a-plus-plus">bat2 and the ?em class="a-plus-plus">hom2-?em class="a-plus-plus">aad6 strain revealing the greatest impact. BAT2 is the dominant gene in these deletion strains and this suggests the initial transaminase step of the Ehrlich pathway is rate-limiting. The triple-deletion strains in combination with BAT2 (?em class="a-plus-plus">bat2-?em class="a-plus-plus">thi3-?em class="a-plus-plus">aad6 and ?em class="a-plus-plus">bat2-?em class="a-plus-plus">thi3-?em class="a-plus-plus">hom2) had the greatest impact on the end metabolite production with the exception of isoamyl alcohol and isovaleric acid. The strain deleted for two dehydrogenases and a reductase (?em class="a-plus-plus">hom2-?em class="a-plus-plus">pro2-?em class="a-plus-plus">aad6) had a greater effect on the levels of these two compounds. This study contributes to the elucidation of the Ehrlich pathway and its significance for aroma production by fermenting yeast cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700