Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening
详细信息    查看全文
  • 作者:Linfen Yu (1)
    Cynthia Ni (1)
    Samantha M. Grist (1)
    Carmen Bayly (1)
    Karen C. Cheung (1)

    1. Department of Electrical and Computer Engineering
    ; University of British Columbia ; 2332 Main Mall ; Vancouver ; V6T 1Z4 ; Canada
  • 关键词:Microfluidics ; 3 ; D cell culture ; Cell ; laden hydrogel beads ; Drug screening
  • 刊名:Biomedical Microdevices
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:17
  • 期:2
  • 全文大小:3,458 KB
  • 参考文献:1. K. Alessandri, B.R. Sarangi, V.V. Gurchenkov, B. Sinha, T.R. Kie脽ling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjevi膰, H. Dom茅jean, L. Rolland, A. Funfak, J. Bibette, N. Bremond, P. Nassoy, Proc Natl Acad Sci 110, 14843鈥?4848 (2013) CrossRef
    2. C. Bayly, L. Yu, K.C. Cheung. Paper presented at the The 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013 Freiburg, Germany (2013a), 1710鈥?712
    3. C. Bayly, L. Yu, K.C. / Cheung. Paper presented at the Biomedical Engineering Society Annual Meeting (BMES 2013), Seattle, USA (2013b)
    4. J. Berthier, S. Le Vot, P. Tiquet, N. David, D. Lauro, P.Y. Benhamou, F. Rivera, Sensors Actuators A Phys 158, 140鈥?48 (2010) CrossRef
    5. A. Birgersdotter, R. Sandberg, I. Ernberg, Semin Cancer Biol 15, 405鈥?12 (2005) CrossRef
    6. S.P.M. Bohari, D.W.L. Hukins, L.M. Grover, Biomed Mater Eng 21, 159鈥?70 (2011)
    7. L. Capretto, S. Mazzitelli, C. Balestra, A. Tosi, C. Nastruzzi, Lab Chip 8, 617鈥?21 (2008) CrossRef
    8. E. Coezy, J. Borgna, H. Rochefort, Cancer Res 42, 317鈥?3 (1982)
    9. B. Desoize, J.-C. Jardillier, Crit Rev Oncol Hematol 36, 193鈥?07 (2000) CrossRef
    10. H.K. Dhiman, A.R. Ray, A.K. Panda, Biomaterials 26, 979鈥?86 (2005) CrossRef
    11. J. Friedrich, C. Seidel, R. Ebner, L.A. Kunz-Schughart, Nat Protoc 4, 309鈥?24 (2009) CrossRef
    12. G. Helmlinger, P.A. Netti, H.C. Lichtenbeld, R.J. Melder, R.K. Jain, Nat Biotechnol 15, 778鈥?83 (1997) CrossRef
    13. F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, L.A. Kunz-Schughart, J Biotechnol 148, 3鈥?5 (2010) CrossRef
    14. C.A. Hoesli, R.L.J. Kiang, D. Mocinecov谩, M. Speck, D.J. Mo拧kov谩, C. Donald-Hague, I. Lac铆k, T.J. Kieffer, J.M. Piret, J Biomed Mater Res.B Appl Biomater 100B, 1017鈥?028 (2012) CrossRef
    15. J.L. Horning, S.K. Sahoo, S. Vijayaraghavalu, S. Dimitrijevic, J.K. Vasir, T.K. Jain, A.K. Panda, V. Labhasetwar, Mol Pharm 5, 849鈥?62 (2008) CrossRef
    16. A. Hsiao, Y.-C. Tung, C.-H. Kuo, B. Mosadegh, R. Bedenis, K. Pienta, S. Takayama, Biomed Microdevices 14, 313鈥?23 (2012a) CrossRef
    17. A.Y. Hsiao, Y.-C. Tung, X. Qu, L.R. Patel, K.J. Pienta, S. Takayama, Biotechnol Bioeng 109, 1293鈥?304 (2012b) CrossRef
    18. L. Huyck, C. Ampe, M.V. Troys, Assay Drug Dev Technol 10, 382鈥?2 (2012) CrossRef
    19. A. Ivascu, M. Kubbies, Int J Oncol 31, 1403鈥?413 (2007)
    20. J.M. Kelm, N.E. Timmins, C.J. Brown, M. Fussenegger, L.K. Nielsen, Biotechnol Bioeng 83, 173鈥?80 (2003) CrossRef
    21. S.R. Khetani, S.N. Bhatia, Nat Biotechnol 26, 120鈥?26 (2008) CrossRef
    22. C. Kim, S. Chung, Y.E. Kim, K.S. Lee, S.H. Lee, K.W. Oh, J.Y. Kang, Lab Chip 11, 246鈥?52 (2011) CrossRef
    23. S. Krause, M.V. Maffini, A.M. Soto, C. Sonnenschein, BMC Cancer 10, 13 (2010) CrossRef
    24. L.A. Kunz-Schughart, J.P. Freyer, F. Hofstaedter, R. Ebner, J Biomol Screen 9, 273鈥?85 (2004) CrossRef
    25. M.A. LeRoux, F. Guilak, L.A. Setton, J Biomed Mater Res 47, 46鈥?3 (1999) CrossRef
    26. R.-Z. Lin, H.-Y. Chang, Biotechnol J 3, 1172鈥?184 (2008) CrossRef
    27. V. Liu Tsang, S.N. Bhatia, Adv Drug Deliv Rev 56, 1635鈥?647 (2004) CrossRef
    28. M. Ma, A. Chiu, G. Sahay, J.C. Doloff, N. Dholakia, R. Thakrar, J. Cohen, A. Vegas, D. Chen, K.M. Bratlie, T. Dang, R.L. York, J. Hollister-Lock, G.C. Weir, D.G. Anderson, Adv Healthcare Mat 2, 667鈥?72 (2013) CrossRef
    29. T. Maguire, A.E. Davidovich, E.J. Wallenstein, E. Novik, N. Sharma, H. Pedersen, I.P. Androulakis, R. Schloss, M. Yarmush, Biotechnol Bioeng 98, 631鈥?44 (2007) CrossRef
    30. A.N. Mehesz et al., Biofabrication 3, 025002 (2011) CrossRef
    31. D.L. Morse, H. Gray, C.M. Payne, R.J. Gillies, Mol Cancer Ther 4, 1495鈥?504 (2005) CrossRef
    32. W. Mueller-Klieser, Am J Physiol Cell Physiol 273, C1109鈥揅1123 (1997)
    33. P.L. Olive, R.E. Durand, Cancer Metastasis Rev 13, 121鈥?38 (1994) CrossRef
    34. M. Peirone, C.J.D. Ross, G. Hortelano, J.L. Brash, P.L. Chang, J Biomed Mater Res 42, 587鈥?96 (1998) CrossRef
    35. D. Poncelet, R. Lencki, C. Beaulieu, J.P. Halle, R.J. Neufeld, A. Fournier, Appl Microbiol Biotechnol 38, 39鈥?5 (1992)
    36. M. Qadir, B. Kwok, W. Dragowska, K. To, D. Le, M. Bally, S. Gorski, Breast Cancer Res Treat 112, 389鈥?03 (2008) CrossRef
    37. T. Rossi, V. Iannuccelli, G. Coppi, E. Bruni, G. Baggio, Anticancer Res 29, 4529鈥?533 (2009)
    38. J. Ruppen, L. Cortes-Dericks, E. Marconi, G. Karoubi, R.A. Schmid, R. Peng, T.M. Marti, O.T. Guenat, Lab Chip 14, 1198鈥?205 (2014) CrossRef
    39. M.S. Shoichet, R.H. Li, M.L. White, S.R. Winn, Biotechnol Bioeng 50, 374鈥?81 (1996) CrossRef
    40. R. Sutherland, Science 240, 177鈥?84 (1988) CrossRef
    41. R.M. Sutherland, H.A. Eddy, B. Bareham, K. Reich, D. Vanantwerp, Int J Radiat Oncol Biol Phys 5, 1225鈥?230 (1979) CrossRef
    42. W.H. Tan, S. Takeuchi, Adv Mater 19, 2696鈥?701 (2007) CrossRef
    43. S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Lab Chip 8, 198鈥?20 (2008) CrossRef
    44. Y.-C. Tung, A.Y. Hsiao, S.G. Allen, Y.-S. Torisawa, M. Ho, S. Takayama, Analyst 136, 473鈥?78 (2011) CrossRef
    45. D. Velasco, E. Tumarkin, E. Kumacheva, Small 8, 1633鈥?642 (2012) CrossRef
    46. Y. Wang, J. Wang, Analyst 139, 2449鈥?458 (2014) CrossRef
    47. G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Annu Rev Biomed Eng 3, 335鈥?73 (2001) CrossRef
    48. V.L. Workman, S.B. Dunnett, P. Kille, D.D. Palmer, Biomicrofluidics 1, 014105鈥? (2007) CrossRef
    49. V.L. Workman, S.B. Dunnett, P. Kille, D.D. Palmer, Macromol Rapid Commun 29, 165鈥?70 (2008) CrossRef
    50. L. Yu, C. Bayly, K. C. Cheung In: / The 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013 Freiburg, Germany, 27-31 October 2013. p 1716鈥?718
    51. L. Yu, M.C.W. Chen, K.C. Cheung, Lab Chip 10, 2424鈥?432 (2010) CrossRef
    52. H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R.M.A. Sullan, G.C. Walker, E. Kumacheva, J Am Chem Soc 128, 12205鈥?2210 (2006) CrossRef
    53. W. Zhang, S. Zhao, W. Rao, J. Snyder, J.K. Choi, J. Wang, I.A. Khan, N.B. Saleh, P.J. Mohler, J. Yu, T.J. Hund, C. Tang, X. He, J Mater Chem B 1, 1002鈥?009 (2013) CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Biophysics and Biomedical Physics
    Nanotechnology
    Engineering Fluid Dynamics
  • 出版者:Springer Netherlands
  • ISSN:1572-8781
文摘
We demonstrate that when using cell-laden core-shell hydrogel beads to support the generation of tumor spheroids, the shell structure reduces the out-of-bead and monolayer cell proliferation that occurs during long-term culture of tumor cells within core-only alginate beads. We fabricate core-shell beads in a two-step process using simple, one-layer microfluidic devices. Tumor cells encapsulated within the bead core will proliferate to form multicellular aggregates which can serve as three-dimensional (3-D) models of tumors in drug screening. Encapsulation in an alginate shell increased the time that cells could be maintained in three-dimensional culture for MCF-7 breast cancer cells prior to out-of-bead proliferation, permitting formation of spheroids over a period of 14 days without the need move the cell-laden beads to clean culture flasks to separate beads from underlying monolayers. Tamoxifen and docetaxel dose response shows decreased toxicity for multicellular aggregates in three-dimensional core-shell bead culture compared to monolayer. Using simple core-only beads gives mixed monolayer and 3-D culture during drug screening, and alters the treatment result compared to the 3-D core-shell or the 2-D monolayer groups, as measured by standard proliferation assay. By preventing the out-of-bead proliferation and subsequent monolayer formation that is observed with core-only beads, the core-shell structure can obviate the requirement to transfer the beads to a new culture flask during drug screening, an important consideration for cell-based drug screening and drugs which have high multicellular resistance index.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700