A search for protein biomarkers links olfactory signal transduction to social immunity
详细信息    查看全文
  • 作者:Maria Marta Guarna (1)
    Andony P Melathopoulos (2) (6)
    Elizabeth Huxter (3)
    Immacolata Iovinella (4)
    Robert Parker (1) (7)
    Nikolay Stoynov (1)
    Amy Tam (1)
    Kyung-Mee Moon (1)
    Queenie WT Chan (1)
    Paolo Pelosi (4)
    Rick White (5)
    Stephen F Pernal (2)
    Leonard J Foster (1)

    1. Department of Biochemistry & Molecular Biology
    ; Centre for High-Throughput Biology ; University of British Columbia ; 2125 East Mall ; Vancouver ; BC ; V6T 1Z4 ; Canada
    2. Beaverlodge Research Farm
    ; Agriculture & Agri-Food Canada ; Beaverlodge ; AB ; T0H 0C0 ; Canada
    6. Current address
    ; Dalhousie University ; Halifax ; NS ; Canada
    3. Kettle Valley Queens
    ; Grand Forks ; BC ; Canada
    4. Department of Agriculture
    ; Food and Environment ; University of Pisa ; Pisa ; Italy
    7. Current address
    ; Macquarie University ; Sydney ; NSW ; Australia
    5. Department of Statistics
    ; University of British Columbia ; Vancouver ; BC ; V6T 1Z4 ; Canada
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:2,552 KB
  • 参考文献:1. Calderone, NW (2012) Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992鈥?009. PLoS One 7: pp. e37235 CrossRef
    2. van der Zee, R, Brodschneider, R, Brusbardis, V, Charri猫re, JD, Chlebo, R, Coffey, MF (2014) Results of international standardised beekeeper surveys of colony losses for winter 2012鈥?013: analysis of winter loss rates and mixed effects modelling of risk factors for winter loss. J Apicultural Res 53: pp. 19-34 CrossRef
    Report on the national stakeholders conference on honey bee health.
    3. Genersch, E (2010) American foulbrood in honeybees and its causative agent. Paenibacillus larvae. J Invertebr Pathol 103: pp. S10-9 CrossRef
    4. Rosenkranz, P, Aumeier, P, Ziegelmann, B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103: pp. S96-119 CrossRef
    5. Thompson, TS, Noot, DK, Calvert, J, Pernal, SF (2005) Determination of lincomycin and tylosin residues in honey by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 19: pp. 309-16 CrossRef
    6. Evans, JD (2003) Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. J Invertebr Pathol 83: pp. 46-50 CrossRef
    7. Martin, SJ, Elzen, PJ, Rubink, WR (2002) Effect of acaricide resistance on reproductive ability of the honey bee mite Varroa destructor. Exp Appl Acarol 27: pp. 195-207 CrossRef
    8. Pettis, JS (2004) A scientific note on Varroa destructor resistance to coumaphos in the United States. Apidologie 35: pp. 91-2 CrossRef
    9. Elzen, PJ, Westervelt, D (2002) Detection of coumaphos resistance in Varroa destructor in Florida. Am Bee J 142: pp. 291-2
    10. Elzen, PJ, Eischen, FA, Baxter, JR, Elzen, GW, Wilson, WT (1999) Detection of resistance in US Varroa jacobsoni oud. (mesostigmata : Varroidae) to the acaricide fluvalinate. Apidologie 30: pp. 13-7 CrossRef
    11. Huang, WF, Solter, LF, Yau, PM, Imai, BS (2013) Nosema ceranae escapes fumagillin control in honey bees. PLoS Pathog 9: pp. e1003185 CrossRef
    12. Elzen, PJ, Baxter, JR, Spivak, M, Wilson, WT (2000) Control of Varroa jacobsoni oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 31: pp. 437-41 CrossRef
    13. Spivak, M, Gilliam, M (1998) Hygienic behaviour of honey bees and its application for control of brood diseases and Varroa. part I. Hygienic behaviour and resistance to American foulbrood. Bee World 79: pp. 124-34
    14. Woodrow, AW, Holst, EC (1942) The mechanism of colony resistance to American foulbrood. J Econ Entomol 35: pp. 327-30 CrossRef
    15. Spivak, MS, Gilliam, M (1993) Facultative expression of hygienic behaviour of honey bees in relation to disease resistance. J Apicultural Res 32: pp. 147-57
    16. Harbo, J, Harris, J (2005) Suppressed mite reproduction explained by the behaviour of adult bees. J Apicultural Res 44: pp. 21-3
    17. Currie, RW, Gatien, P (2006) Timing acaricide treatments to prevent Varroa destructor (acari: Varroidae) from causing economic damage to honey bee colonies. Can Entomologist 138: pp. 238-52 CrossRef
    18. Arechavaleta-Velasco, ME, Alcala-Escamilla, K, Robles-Rios, C, Tsuruda, JM, Hunt, GJ (2012) Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behavior in response to Varroa mites. PLoS One 7: pp. e47269 CrossRef
    19. Spivak, MS, Reuter, GS (2001) Resistance to American fouldbrood disease by honey bee colonies, Apis mellifera, bred for hygienic behavior. Apidologie 32: pp. 555-65 CrossRef
    20. Spivak, MS, Gilliam, M (1998) Hygienic behavior of honey bees and its application for control of brood diseases and varroa; part II. Studies on hygienic behavior since the rothenbuhler era. Bee World 79: pp. 169-86
    21. Villegas, AJ, Villa, JD (2006) Uncapping of pupal cells by European bees in the United States as responses to Varroa destructor and Galleria mellonella. J Apicultural Res 45: pp. 203-6 CrossRef
    22. Neumann, P, H盲rtel, S (2004) Removal of small hive beetle (Aethina tumida) eggs and larvae by African honey bee colonies (Apis mellifera scutellata). Apidologie 35: pp. 31-6 CrossRef
    23. Ibrahim, A, Spivak, MS (2006) The relationship between hygienic behavior and suppression of mite reproduction as honey bee (Apis mellifera) mechanisms of resistance to Varroa destructor. Apidologie 37: pp. 31-40 CrossRef
    24. Parker, R, Guarna, MM, Melathopoulos, AP, Moon, KM, White, R, Huxter, E (2012) Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera). Genome Biol 13: pp. R81-2012-13-9-r81 CrossRef
    25. Conte, Y, Alaux, C, Martin, JF, Harbo, JR, Harris, JW, Dantec, C (2011) Social immunity in honeybees (apis mellifera): transcriptome analysis of Varroa-hygienic behaviour. Insect Mol Biol 20: pp. 399-408 CrossRef
    26. Parker, R, Melathopoulos, AP, White, R, Pernal, SF, Guarna, MM, Foster, LJ (2010) Ecological adaptation of diverse honey bee (Apis mellifera) populations. PLoS One 5: pp. e11096 CrossRef
    27. Foret, S, Maleszka, R (2006) Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 16: pp. 1404-13 CrossRef
    28. Iovinella, I, Dani, FR, Niccolini, A, Sagona, S, Michelucci, E, Gazzano, A (2011) Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age. J Proteome Res 10: pp. 3439-49 CrossRef
    29. Swanson, JA, Torto, B, Kells, SA, Mesce, KA, Tumlinson, JH, Spivak, M (2009) Odorants that induce hygienic behavior in honeybees: Identification of volatile compounds in chalkbrood-infected honeybee larvae. J Chem Ecol 35: pp. 1108-16 CrossRef
    30. Schoning, C, Gisder, S, Geiselhardt, S, Kretschmann, I, Bienefeld, K, Hilker, M (2012) Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera. J Exp Biol 215: pp. 264-71 CrossRef
    31. Pelosi, P, Zhou, JJ, Ban, LP, Calvello, M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63: pp. 1658-76 CrossRef
    32. Yao, M, Rosenfeld, J, Attridge, S, Sidhu, S, Aksenov, V, Rollo, CD (2009) The ancient chemistry of avoiding risks of predation and disease. Evolutionary Biology 36: pp. 267-8 CrossRef
    33. Garrido, PM, Antunez, K, Martin, M, Porrini, MP, Zunino, P, Eguaras, MJ (2013) Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides. J Insect Physiol 59: pp. 113-9 CrossRef
    34. Pernal, SF, Sewalem, A, Melathopoulos, AP (2012) Breeding for hygienic behaviour in honeybees (Apis mellifera) using free-mated nucleus colonies. Apidologie 43: pp. 403-6 CrossRef
    35. Lapidge, KL, Oldroyd, BP, Spivak, M (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften 89: pp. 565-8
    36. Tsuruda, JM, Harris, JW, Bourgeois, L, Danka, RG, Hunt, GJ (2012) High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees. PLoS One 7: pp. e48276 CrossRef
    37. Wilson-Rich, N, Spivak, M, Fefferman, NH, Starks, PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54: pp. 405-23 CrossRef
    38. Leal, WS (2013) Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58: pp. 373-91 CrossRef
    39. Tegoni, M, Campanacci, V, Cambillau, C (2004) Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci 29: pp. 257-64 CrossRef
    40. Chan, QW, Chan, MY, Logan, M, Fang, Y, Higo, H, Foster, LJ (2013) Honey bee protein atlas at organ-level resolution. Genome Res 23: pp. 1951-60 CrossRef
    41. Dani, FR, Iovinella, I, Felicioli, A, Niccolini, A, Cavello, MA, Carucci, MG (2010) Mapping the expression of soluble olfactory proteins in the honeybee. J Proteome Res 9: pp. 1822-33 CrossRef
    42. Keeling, CI, Plettner, E, Slessor, KN (2004) Hymenopteran semiochemicals. Top Curr Chem 239: pp. 133-77 CrossRef
    43. Schiavo, G, Benfenati, F, Poulain, B, Rossetto, O, Polverino De Laureto, P, DasGupta, BR (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359: pp. 832-5 CrossRef
    44. Whitfield, CW, Cziko, AM, Robinson, GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302: pp. 296-9 CrossRef
    45. Marr, HS, Edgell, CJ (2003) Testican-1 inhibits attachment of neuro-2a cells. Matrix Biol 22: pp. 259-66 CrossRef
    46. Santelli, E, Leone, M, Li, C, Fukushima, T, Preece, NE, Olson, AJ (2005) Structural analysis of Siah1-siah-interacting protein interactions and insights into the assembly of an E3 ligase multiprotein complex. J Biol Chem 280: pp. 34278-87 CrossRef
    47. Sumegi, M, Hunyadi-Gulyas, E, Medzihradszky, KF, Udvardy, A (2003) 26S proteasome subunits are O-linked N-acetylglucosamine-modified in Drosophila melanogaster. Biochem Biophys Res Commun 312: pp. 1284-9 CrossRef
    48. Satoh, T, Ishizuka, T, Tomaru, T, Yoshino, S, Nakajima, Y, Hashimoto, K (2009) Tat-binding protein-1 (TBP-1), an ATPase of 19S regulatory particles of the 26S proteasome, enhances androgen receptor function in cooperation with TBP-1-interacting protein/Hop2. Endocrinology 150: pp. 3283-90 CrossRef
    49. Spivak, M, Reuter, GS (2001) Varroa destructor infestation in untreated honey bee (hymenoptera: Apidae) colonies selected for hygienic behavior. J Econ Entomol 94: pp. 326-31 CrossRef
    50. Rinderer, TE, Harris, JW, Hunt, GJ, Guzman, LI (2010) Breeding for resistance to Varroa destructor in North America. Apidologie 41: pp. 409-24 CrossRef
    51. Harbo, JR, Harris, JW (2009) Responses to Varroa by honey bees with different levels of Varroa sensitive hygiene. J Apic Res 48: pp. 156-61 CrossRef
    52. Moritz, RFA, Southwick, EE, Harbo, JR (1987) Genetic analysis of defensive behaviour of honeybee colonies (Apis mellifera L.) in a field test. Apidologie. 18: pp. 27-42 CrossRef
    53. Foster, LJ, Hoog, CL, Mann, M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci U S A 100: pp. 5813-8 CrossRef
    54. Ishihama, Y, Rappsilber, J, Mann, M (2006) Modular stop and go extraction tips with stacked disks for parallel and multidimensional peptide fractionation in proteomics. J Proteome Res 5: pp. 988-94 CrossRef
    55. Chan, QW, Foster, LJ (2008) Changes in protein expression during honey bee larval development. Genome Biol 9: pp. R156 CrossRef
    56. Boersema, PJ, Aye, TT, Veen, TA, Heck, AJ, Mohammed, S (2008) Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8: pp. 4624-32 CrossRef
    57. Chan, QW, Howes, CG, Foster, LJ (2006) Quantitative comparison of caste differences in honeybee hemolymph. Mol Cell Proteomics 5: pp. 2252-62 CrossRef
    58. Mortensen, P, Gouw, JW, Olsen, JV, Ong, SE, Rigbolt, KTG, Bunkenborg, J (2010) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res. 9: pp. 393-403 CrossRef
    59. Saeed, AI, Sharov, V, White, J, Li, J, Liang, W, Bhagabati, N (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34: pp. 374-8
    60. Dennis, G, Sherman, BT, Hosack, DA, Yang, J, Gao, W, Lane, HC (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4: pp. 3 CrossRef
    61. Huang, W, Sherman, BT, Lempicki, RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: pp. 44-57 CrossRef
    62. Ban, L, Scaloni, A, Brandazza, A, Angeli, S, Zhang, L, Yan, Y (2003) Chemosensory proteins of Locusta migratoria. Insect Mol Biol 12: pp. 125-34 CrossRef
    63. Calvello, M, Guerra, N, Brandazza, A, D鈥橝mbrosio, C, Scaloni, A, Dani, FR (2003) Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell Mol Life Sci 60: pp. 1933-43 CrossRef
    64. Vizca铆no, JA, Deutsch, EW, Wang, R, Csordas, A, Reisinger, F, R铆os, D (2014) ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination. Nature Biotechnol. 30: pp. 223-6 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background The Western honey bee (Apis mellifera L.) is a critical component of human agriculture through its pollination activities. For years, beekeepers have controlled deadly pathogens such as Paenibacillus larvae, Nosema spp. and Varroa destructor with antibiotics and pesticides but widespread chemical resistance is appearing and most beekeepers would prefer to eliminate or reduce the use of in-hive chemicals. While such treatments are likely to still be needed, an alternate management strategy is to identify and select bees with heritable traits that allow them to resist mites and diseases. Breeding such bees is difficult as the tests involved to identify disease-resistance are complicated, time-consuming, expensive and can misidentify desirable genotypes. Additionally, we do not yet fully understand the mechanisms behind social immunity. Here we have set out to discover the molecular mechanism behind hygienic behavior (HB), a trait known to confer disease resistance in bees. Results After confirming that HB could be selectively bred for, we correlated measurements of this behavior with protein expression over a period of three years, at two geographically distinct sites, using several hundred bee colonies. By correlating the expression patterns of individual proteins with HB scores, we identified seven putative biomarkers of HB that survived stringent control for multiple hypothesis testing. Intriguingly, these proteins were all involved in semiochemical sensing (odorant binding proteins), nerve signal transmission or signal decay, indicative of the series of events required to respond to an olfactory signal from dead or diseased larvae. We then used recombinant versions of two odorant-binding proteins to identify the classes of ligands that these proteins might be helping bees detect. Conclusions Our data suggest that neurosensory detection of odors emitted by dead or diseased larvae is the likely mechanism behind a complex and important social immunity behavior that allows bees to co-exist with pathogens.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700