Prokaryote-expressed M2e protein improves H9N2 influenza vaccine efficacy and protection against lethal influenza a virus in mice
详细信息    查看全文
  • 作者:Eun-Ha Kim (1)
    Jun-Han Lee (1)
    Philippe Noriel Q Pascua (1)
    Min-Suk Song (1)
    Yun-Hee Baek (1)
    Hyeok-il Kwon (1)
    Su-Jin Park (1)
    Gyo-Jin Lim (1)
    Arun Decano (1)
    Mohammed YE Chowdhury (2)
    Su-Kyung Seo (2)
    Man Ki Song (3)
    Chul-Joong Kim (2)
    Young-Ki Choi (1)
  • 关键词:Influenza A virus ; M2e protein ; Escherichia coli ; Inactivated vaccine
  • 刊名:Virology Journal
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:10
  • 期:1
  • 全文大小:721KB
  • 参考文献:1. Shishkina LN, Skarnovich MO, Kabanov AS, Sergeev AA, Olkin SE, Tarasov SA, Belopolskaya MV, Sergeeva SA, Epstein OI, Malkova EM: Antiviral activity of Anaferon (pediatric formulation) in mice infected with pandemic influenza virus A(H1N1/09). / Bull Exp Biol Med 2010, 149:612-14. CrossRef
    2. Pappaioanou M: Highly pathogenic H5N1 avian influenza virus: cause of the next pandemic? / Comp Immunol Microbiol Infect Dis 2009, 32:287-00. CrossRef
    3. Bramley AM, Bresee J, Finelli L, Centers for Disease Control and Prevention (CDC): Pediatric influenza. / Pediatr Nurs 2009, 35:335-45.
    4. Kawai N, Ikematsu H, Hirotsu N, Maeda T, Kawashima T, Tanaka O, Yamauchi S, Kawamura K, Matsuura S, Nishimura M: Clinical effectiveness of oseltamivir and zanamivir for treatment of influenza A virus subtype H1N1 with the H274Y mutation: a Japanese, multicenter study of the 2007-008 and 2008-009 influenza seasons. / Clin Infect Dis 2009, 49:1828-835. CrossRef
    5. Nichol KL, Treanor JJ: Vaccines for seasonal and pandemic influenza. / J Infect Dis 2006,194(Suppl 2):S111-S118. CrossRef
    6. Duan S, Boltz DA, Seiler P, Li J, Bragstad K, Nielsen LP, Webby RJ, Webster RG, Govorkova EA: Oseltamivir-resistant pandemic H1N1/2009 influenza virus possesses lower transmissibility and fitness in ferrets. / PLoS Pathog 2010, 6:e1001022. CrossRef
    7. Ebrahimi SM, Tebianian M: Influenza A viruses: why focusing on M2e-based universal vaccines. / Virus Genes 2011, 42:1-. CrossRef
    8. Wu F, Huang JH, Yuan XY, Huang WS, Chen YH: Characterization of immunity induced by M2e of influenza virus. / Vaccine 2007, 25:8868-873. vaccine.2007.09.056">CrossRef
    9. Misplon JA, Lo CY, Gabbard JD, Tompkins SM, Epstein SL: Genetic control of immune responses to influenza A matrix 2 protein (M2). / Vaccine 2010, 28:5817-827. vaccine.2010.06.069">CrossRef
    10. Zebedee SL, Lamb RA: Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. / J Virol 1988, 62:2762-772.
    11. Fan J, Liang X, Horton MS, Perry HC, Citron MP, Heidecker GJ, Fu TM, Joyce J, Przysiecki CT, Keller PM: Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. / Vaccine 2004, 22:2993-003. vaccine.2004.02.021">CrossRef
    12. Slepushkin VA, Katz JM, Black RA, Gamble WC, Rota PA, Cox NJ: Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. / Vaccine 1995, 13:1399-402. CrossRef
    13. Frace AM, Klimov AI, Rowe T, Black RA, Katz JM: Modified M2 proteins produce heterotypic immunity against influenza A virus. / Vaccine 1999, 17:2237-244. CrossRef
    14. Livingston BD, Higgins D, Van NG: Evolving strategies for the prevention of influenza infection: potential for multistrain targeting. / BioDrugs 2006, 20:335-40. CrossRef
    15. Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W: A universal influenza A vaccine based on the extracellular domain of the M2 protein. / Nat Med 1999, 5:1157-163. CrossRef
    16. Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, Otvos L Jr, Gerhard W: Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. / Vaccine 2003, 21:2616-626. CrossRef
    17. Zhao G, Sun S, Du L, Xiao W, Ru Z, Kou Z, Guo Y, Yu H, Jiang S, Lone Y: An H5N1 M2e-based multiple antigenic peptide vaccine confers heterosubtypic protection from lethal infection with pandemic 2009 H1N1 virus. / Virol J 2010, 7:151. CrossRef
    18. Yang XF, Jiang Y, Li WY, Kuang Y, Jiang ZH, Wang FP, Li MY: Expression and immunity of fused protein H1N1 M2e and cholera toxin B. / Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2008, 24:263-66.
    19. Huleatt JW, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, Tang J, McDonald W, Song L, Evans RK: Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. / Vaccine 2008, 26:201-14. vaccine.2007.10.062">CrossRef
    20. Song JM, Wang BZ, Park KM, Van RN, Quan FS, Kim MC, Jin HT, Pekosz A, Compans RW, Kang SM: Influenza virus-like particles containing M2 induce broadly cross protective immunity. / PLoS One 2011, 6:e14538. CrossRef
    21. Quan FS, Kim Y, Lee S, Yi H, Kang SM, Bozja J, Moore ML, Compans RW: Viruslike particle vaccine induces protection against respiratory syncytial virus infection in mice. / J Infect Dis 2011, 204:987-95. CrossRef
    22. Song MS, Pascua PN, Lee JH, Baek YH, Lee OJ, Kim CJ, Kim H, Webby RJ, Webster RG, Choi YK: The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. / J Virol 2009, 83:12325-2335. CrossRef
    23. Swayne DE, Beck JR: Heat inactivation of avian influenza and Newcastle disease viruses in egg products. / Avian Pathol 2004, 33:512-18. CrossRef
    24. King DJ: Evaluation of different methods of inactivation of Newcastle disease virus and avian influenza virus in egg fluids and serum. / Avian Dis 1991, 35:505-14. CrossRef
    25. Thomas C, Swayne DE: Thermal inactivation of H5N1 high pathogenicity avian influenza virus in naturally infected chicken meat. / J Food Prot 2007, 70:674-80.
    26. Thomas C, King DJ, Swayne DE: Thermal inactivation of avian influenza and Newcastle disease viruses in chicken meat. / J Food Prot 2008, 71:1214-222.
    27. Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF: Human infection with influenza H9N2. / Lancet 1999, 354:916-17. CrossRef
    28. Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, Norwood M, Shortridge KF, Webster RG, Guan Y: Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. / Virology 2000, 267:279-88. CrossRef
    29. Maines TR, Szretter KJ, Perrone L, Belser JA, Bright RA, Zeng H, Tumpey TM, Katz JM: Pathogenesis of emerging avian influenza viruses in mammals and the host innate immune response. / Immunol Rev 2008, 225:68-4. CrossRef
    30. Choi YK, Ozaki H, Webby RJ, Webster RG, Peiris JS, Poon L, Butt C, Leung YH, Guan Y: Continuing evolution of H9N2 influenza viruses in Southeastern China. / J Virol 2004, 78:8609-614. CrossRef
    31. Moscona A: Neuraminidase inhibitors for influenza. / N Engl J Med 2005, 353:1363-373. CrossRef
    32. Du L, Zhou Y, Jiang S: Research and development of universal influenza vaccines. / Microbes Infect 2010, 12:280-86. CrossRef
    33. Moscona A: Neuraminidase inhibitors for influenza. / N Engl J Med 2005, 353:1363-373. CrossRef
    34. Shim BS, Choi YK, Yun CH, Lee EG, Jeon YS, Park SM, Cheon IS, Joo DH, Cho CH, Song MS: Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza. / PLoS One 2011, 6:e27953. CrossRef
    35. Schotsaert M, De FM, Fiers W, Saelens X: Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. / Expert Rev Vaccines 2009, 8:499-08. CrossRef
    36. Tompkins SM, Zhao ZS, Lo CY, Misplon JA, Liu T, Ye Z, Hogan RJ, Wu Z, Benton KA, Tumpey TM: Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1. / Emerg Infect Dis 2007, 13:426-35. CrossRef
    37. Webster RG, Laver WG, Kilbourne ED: Reactions of antibodies with surface antigens of influenza virus. / J Gen Virol 1968, 3:315-26. CrossRef
    38. Webster RG, Laver WG: Preparation and properties of antibody directed specifically against the neuraminidase of influenza virus. / J Immunol 1967, 99:49-5.
    39. De FM, Fiers W, Martens W, Birkett A, Ramne A, Lowenadler B, Lycke N, Jou WM, Saelens X, Centers for Disease Control and Prevention (CDC): Improved design and intranasal delivery of an M2e-based human influenza A vaccine. / Vaccine 2006, 24:6597-601. vaccine.2006.05.082">CrossRef
    40. Mozdzanowska K, Zharikova D, Cudic M, Otvos L, Gerhard W: Roles of adjuvant and route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. / Virol J 2007, 4:118. CrossRef
    41. Jegerlehner A, Schmitz N, Storni T, Bachmann MF: Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. / J Immunol 2004, 172:5598-605.
    42. Subbarao K, Joseph T: Scientific barriers to developing vaccines against avian influenza viruses. / Nat Rev Immunol 2007, 7:267-78. CrossRef
    43. Zharikova D, Mozdzanowska K, Feng J, Zhang M, Gerhard W: Influenza type A virus escape mutants emerge in vivo in the presence of antibodies to the ectodomain of matrix protein 2. / J Virol 2005, 79:6644-654. CrossRef
    44. Nelson MI, Vincent AL, Kitikoon P, Holmes EC, Gramer MR: Evolution of Novel Reassortant A/H3N2 Influenza Viruses in North American Swine and Humans, 2009-011. / J Virol 2012, 86:8872-878. CrossRef
    45. Lindstrom S, Garten R, Balish A, Shu B, Emery S, Berman L, Barnes N, Sleeman K, Gubareva L, Villanueva J: Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011. / Emerg Infect Dis 2012, 18:834-37. CrossRef
    46. Richards S, House M, Pontones P, Metcalf D, Marsh B, Swenson S, Korslund J, Blanton L, Epperson S, Bigger M: Outbreak of Influenza A (H3N2) Virus Among Persons and Swine at a County Fair - Indiana, July 2012. / MMWR Morb Mortal Wkly Rep 2012, 61:561.
    47. Reed LJ, Muench H: A simple method of estimating fifty per cent endpoints. / Am J Epidemiol 1938, 27:493-97.
  • 作者单位:Eun-Ha Kim (1)
    Jun-Han Lee (1)
    Philippe Noriel Q Pascua (1)
    Min-Suk Song (1)
    Yun-Hee Baek (1)
    Hyeok-il Kwon (1)
    Su-Jin Park (1)
    Gyo-Jin Lim (1)
    Arun Decano (1)
    Mohammed YE Chowdhury (2)
    Su-Kyung Seo (2)
    Man Ki Song (3)
    Chul-Joong Kim (2)
    Young-Ki Choi (1)

    1. Microbiology Department, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju, 361-763, Republic of Korea
    2. College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yuseoung-Gu, Daejeon, 305-764, Republic of Korea
    3. Laboratory Science Division, International Vaccine Institute, Seoul, Republic of Korea
  • ISSN:1743-422X
文摘
Background Influenza vaccines are prepared annually based on global epidemiological surveillance data. However, since there is no method by which to predict the influenza strain that will cause the next pandemic, the demand to develop new vaccination strategies with broad cross-reactivity against influenza viruses are clearly important. The ectodomain of the influenza M2 protein (M2e) is an attractive target for developing a vaccine with broad cross-reactivity. For these reasons, we investigated the efficacy of an inactivated H9N2 virus vaccine (a-H9N2) mixed with M2e (1xM2e or 4xM2e) proteins expressed in Escherichia coli, which contains the consensus of sequence the extracellular domain of matrix 2 (M2e) of A/chicken/Vietnam/27262/09 (H5N1) avian influenza virus, and investigated its humoral immune response and cross-protection against influenza A viruses. Results Mice were intramuscularly immunized with a-H9N2, 1xM2e alone, 4xM2e alone, a-H9N2/1xM2e, or a-H9N2/4xM2e. Three weeks post-vaccination, mice were challenged with lethal homologous (A/ chicken /Korea/ma163/04, H9N2) or heterosubtypic virus (A/Philippines/2/82, H3N2 and A/aquatic bird/Korea/maW81/05, H5N2). Our studies demonstrate that the survival of mice immunized with a-H9N2/1xM2e or with a-H9N2/4xM2e (100% survival) was significantly higher than that of mouse-adapted H9N2 virus-infected mice vaccinated with 1xM2e alone or with 4xM2e alone (0% survival). We also evaluated the protective efficacy of the M2e-?vaccine against infection with mouse-adapted H5N2 influenza virus. Protection from death in the control group (0% survival) was similar to that of the 1×M2e alone and 4xM2e alone-vaccinated groups (0% survival). Only 40% of mice vaccinated with vaccine alone survived challenge with H5N2, while the a-H9N2/1×M2e and a-H9N2/4×M2e groups showed 80% and 100% survival following mouse-adapted H5N2 challenge, respectively. We also examined cross-protection against human H3N2 virus and found that the a-H9N2/1×M2e group displayed partial cross-protection against H3N2 (40% survival), whereas vaccine alone, 1×M2e alone, 4×M2e alone, or H9N2/1×M2e groups showed incomplete protection (0% survival) in response to challenge with a lethal dose of human H3N2 virus. Conclusions Taken together, these results suggest that prokaryote-expressed M2e protein improved inactivated H9N2 virus vaccine efficacy and achieved cross-protection against lethal influenza A virus infection in mice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700