On Noisy Extensions of Nonholonomic Constraints
详细信息    查看全文
文摘
We propose several stochastic extensions of nonholonomic constraints for mechanical systems and study the effects on the dynamics and on the conservation laws. Our approach relies on a stochastic extension of the Lagrange–d’Alembert framework. The mechanical system we focus on is the example of a Routh sphere, i.e., a rolling unbalanced ball on the plane. We interpret the noise in the constraint as either a stochastic motion of the plane, random slip or roughness of the surface. Without the noise, this system possesses three integrals of motion: energy, Jellet and Routh. Depending on the nature of noise in the constraint, we show that either energy, or Jellet, or both integrals can be conserved, with probability 1. We also present some exact solutions for particular types of motion in terms of stochastic integrals. Next, for an arbitrary nonholonomic system, we consider two different ways of including stochasticity in the constraints. We show that when the noise preserves the linearity of the constraints, then energy is preserved. For other types of noise in the constraint, e.g., in the case of an affine noise, the energy is not conserved. We study in detail a class of Lagrangian mechanical systems on semidirect products of Lie groups, with “rolling ball type” constraints. We conclude with numerical simulations illustrating our theories, and some pedagogical examples of noise in constraints for other nonholonomic systems popular in the literature, such as the nonholonomic particle, the rolling disk and the Chaplygin sleigh.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700