Probabilistic stable motion planning with stability uncertainty for articulated vehicles on challenging terrains
详细信息    查看全文
  • 作者:Mohammad Norouzi ; Jaime Valls Miro ; Gamini Dissanayake
  • 关键词:Probabilistic path planning ; Uncertainty analysis ; Tip ; over stability ; Mechanical reconfiguration ; Rescue robotics
  • 刊名:Autonomous Robots
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:40
  • 期:2
  • 页码:361-381
  • 全文大小:3,676 KB
  • 参考文献:Berg, J. V. D., Abbeel, P., & Goldberg, K. (2011). Lqg-mp: Optimized path planning for robots with motion uncertainty and imperfect state information. The International Journal of Robotics Research, 30(7), 895–913.CrossRef
    Besseron, G., Grand, C., Amar, F.B., & Bidaud, P. (2008). Decoupled control of the high mobility robot hylos based on a dynamic stability margin. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 22–23). Nice, France.
    Brooks, A., Makarenko, A., Williams, S., & Durrant-Whyte, H. (2006). Parametric POMDPs for planning in continuous state spaces. Robotics and Autonomous Systems, 54(11), 887–897.CrossRef
    Candido, S., Davidson, J., & Hutchinson, S. (2010). Exploiting domain knowledge in planning for uncertain robot systems modeled as pomdps. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 3596–3603). Alaska, USA.
    Coelho, P., & Nunes, U. (2005). Path-following control of mobile robots in presence of uncertainties. IEEE Transactions on Robotics, 21(2), 252–261.CrossRef
    Freitas, G., Gleizer, G., Lizarralde, F., & Hsu, L. (2010). Kinematic reconfigurability control for an environmental mobile robot operating in the amazon rain forest. Journal of Field Robotics, 27(2), 197–216.
    Gill, R., Kulic, D., & Nielsen, C. (2013). Robust path following for robot manipulators. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3412–3418). Tokyo, Japan.
    Greenberg, M. (1998). Advanced engineering mathematics, 2/E. New Delhi: Pearson Education India.
    Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRef
    Iagnemma, K., & Dubowsky, S. (2004). Mobile robot in rough terrain (Vol. 12). Berlin: Springer Tracts in Advanced Robotics.
    Iagnemma, K., Rzepniewski, A., Dubowsky, S., & Schenker, P. (2003). Control of robotic vehicles with actively articulated suspensions in rough terrain. Autonomous Robots, 14(1), 5–16.CrossRef MATH
    Julier, S., & Uhlmann, J. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401–422.CrossRef
    Keiji, N., Seiga, K., Yoshito, O., Kazuki, O., Kazuya, Y., Satoshi, T., et al. (2013). Emergency response to the nuclear accident at the fukushima daiichi nuclear power plants using mobile rescue robots. Journal of Field Robotics, 30(1), 44–63.CrossRef
    LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path planning. Technical report, Iowa State University, Dept. of Computer Science.
    LaValle, S. (2006). Planning algorithms. Cambridge: Cambridge University Press.CrossRef MATH
    Liang, D., Zongquan, D., Haibo, G., Junlong, G., Dapeng, Z., & Karl, I. (2013). Experimental study and analysis of the wheels’ steering mechanics for planetary exploration wheeled mobile robots moving on deformable terrain. The International Journal of Robotics Research, 32(6), 712–743.CrossRef
    Liangjun, Z., & Dinesh, M. (2008). An efficient retraction-based rrt planner. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 3743–3750). Pasadena, USA.
    Liu, Y., & Liu, G. (2010). Interaction analysis and online tip-over avoidance for a reconfigurable tracked mobile modular manipulator negotiating slopes. IEEE/ASME Transactions on Mechatronics, 15(4), 623–635.CrossRef
    Matthijs, S., & Nikos, V. (2005). Perseus: Randomized point-based value iteration for pomdps. Journal of Artificial Intelligence Research, 24, 195–220.
    Norouzi, M., Miro, J.V., & Dissanayake, G. (2013a). Planning stable and efficient paths for articulated mobile robots on challenging terrains. In Proceedings of Australasian Conference on Robotics and Automation (p. 10). Sydney, Australia: UNSW.
    Norouzi, M., Miro, J.V., & Dissanayake, G. (2013b). A statistical approach for uncertain stability analysis of mobile robots. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 191–196). Karlsruhe, Germany.
    Norouzi, M., Miro, J.V., Dissanayake, G., & Vidal-Calleja, T. (2014). Path planning with stability uncertainty for articulated mobile vehicles in challenging environments. In IEEE/RSJ Proceedings of International Conference on Intelligent Robots and Systems (pp. 1748–1753). Chicago, Illinois, USA.
    Papadopoulos, E., & Rey, D. (1996). A new measure of tipover stability margin for mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation (vol. 4, pp. 3111–3116). Minneapolis, USA.
    Papadopoulos, E., & Rey, D. (2000). The force angle measure of tipover stability margin for mobile manipulatiors. Vehicle System Dynamics, 33(1), 29–48.CrossRef
    Parks, P. (1966). Liapunov redesign of model reference adaptive control systems. IEEE Transactions on Automatic Control, 11(3), 362–367.CrossRef
    Roan, P., Burmeister, A., Rahimi, A., Holz, K., & Hooper, D. (2010). Real-world validation of three tipover algorithms for mobile robots. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 4431–4436). Anchorage, Alaska, USA.
    Rubinstein, & Reuven, (1981). Simulation and the Monte Carlo method. New York: Wiley.CrossRef MATH
    Santosh, H., Heijden, V. D., Wam, G., Frits, V. E., Alfred, S., & Cajo, T. B. (2014). Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Computers and Electronics in Agriculture, 100, 41–50.CrossRef
    Sebastian, T., Wolfram, B., & Dieter, F. (2005). Probabilistic robotics. Cambridge: MIT Press.MATH
    SeungBeum, S., JunHo, C., ChangHyun, C., YeonSub, J., Seung-Yeup, H., & Sungchul, K. (2014). Mine detecting robot system. In Field and Service Robotics (pp. 97–109). Springer.
    Siegwart, R., & Nourbakhsh, I. R. (2004). Introduction to autonomous mobile robotos. Cambridge: The MIT press.
    Smith, R. (2005). Open dynamics engine. http://​www.​ode.​org/​ . Accessed 2011.
    Toit, N. D., & Burdick, J. (2012). Robot motion planning in dynamic, uncertain environments. IEEE Transactions on Robotics, 28(1), 101–115.CrossRef
    Tong, C. H., Gingras, D., Larose, K., Barfoot, T. D., & Dupuis, E. (2013). The canadian planetary emulation terrain 3D mapping dataset. The International Journal of Robotics Research, 32(4), 389–395.CrossRef
  • 作者单位:Mohammad Norouzi (1)
    Jaime Valls Miro (1)
    Gamini Dissanayake (1)

    1. Faculty of Engineering and IT, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW, 2007, Australia
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Automation and Robotics
    Electronic and Computer Engineering
    Computer Imaging, Vision, Pattern Recognition and Graphics
    Mechanical Engineering
    Simulation and Modeling
  • 出版者:Springer Netherlands
  • ISSN:1573-7527
文摘
A probabilistic stable motion planning strategy applicable to reconfigurable robots is presented in this paper. The methodology derives a novel statistical stability criterion from the cumulative distribution of a tip-over metric. The measure is dynamically updated with imprecise terrain information, localization and robot kinematics to plan safety-constrained paths which simultaneously allow the widest possible visibility of the surroundings by simultaneously assuming highest feasible vantage robot configurations. The proposed probabilistic stability metric allows more conservative poses through areas with higher levels of uncertainty, while avoiding unnecessary caution in poses assumed at well-known terrain sections. The implementation with the well known grid based A* algorithm and also a sampling based RRT planner are presented. The validity of the proposed approach is evaluated with a multi-tracked robot fitted with a manipulator arm and a range camera using two challenging elevation terrains data sets: one obtained whilst operating the robot in a mock-up urban search and rescue arena, and the other from a publicly available dataset of a quasi-outdoor rover testing facility.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700