Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model
详细信息    查看全文
  • 作者:R. Chabiniok (1)
    P. Moireau (1)
    P.-F. Lesault (2)
    A. Rahmouni (2)
    J.-F. Deux (2)
    D. Chapelle (1) dominique.chapelle@inria.fr
  • 关键词:Patient ; specific cardiac modeling – ; State and parameter estimation – ; Data assimilation – ; Filtering – ; Clinical data
  • 刊名:Biomechanics and Modeling in Mechanobiology
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:11
  • 期:5
  • 页码:609-630
  • 全文大小:1.9 MB
  • 参考文献:1. Ashikaga H, Mickelsen SR, Ennis DB, Rodriguez I, Kellman P, Wen H, McVeigh ER (2005) Electromechanical analysis of infarct border zone in chronic myocardial infarction. Am J Physiol Heart Circ Physiol 288: H1099–H1105
    2. Augenstein KF, Cowan BR, LeGrice IJ, Nielsen PMF, Young AA (2005) Method and apparatus for soft tissue material parameter estimation using tissue tagged magnetic resonance imaging. J Biomech Eng 127(1): 148–157
    3. Axel L, Montillo A, Kim D (2005) Tagged magnetic resonance imaging of the heart: a survey. Med Image Anal 9(4): 376–393
    4. Baerentzen J, Aanaes H (2005) Signed distance computation using the angle weighted pseudo-normal. IEEE Trans Vis Comput Graph 11(3): 243–253
    5. Bathe KJ (1996) Finite Element Procedures. Prentice-Hall, Englewood Cliffs
    6. Bensoussan A (1971) Filtrage Optimal des Syst猫mes Lin茅aires. Dunod, Paris
    7. Bestel J, Cl茅ment F, Sorine M (2001) A biomechanical model of muscle contraction. In: Niessen WJ, Viergever MA (eds) Lectures notes in Computer Science, vol 2208. Springer, Berlin
    8. Blum J, Le Dimet F-X, Navon IM (2009) Data assimilation for geophysical fluids. Comput Methods Atmos Ocean 14: 385–441
    9. Bogatyrenko E, Hanebeck U (2010) Simultaneous state and parameter estimation for physics-based tracking of heart surface motion. In: IEEE conference on multisensor fusion and integration for intelligent systems (MFI), 2010, pp 109–114
    10. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement of healthcare professionals from the cardiac imaging comittee of the council on clinical cardiology of the American Heart Association. Circulation 105: 539–542
    11. Chabiniok R, Chapelle D, Lesault PF, Rahmouni A, Deux JF (2009) Validation of a biomechanical heart model using animal data with acute myocardial infarction. In: CI2BM09—MICCAI workshop on cardiovascular interventional imaging and biophysical modelling, London, UK
    12. Chapelle D, Fern脿ndez MA, Gerbeau J-F, Moireau P, Sainte-Marie J, Zenzemi N (2009) Numerical simulation of the electromechanical activity of the heart. In: Proceedings of functional imaging and modeling of the heart 2009 (FIMH’09), vol 5528 of LNCS. pp 357–365
    13. Chapelle D, Le Tallec P, Moireau P, Sorine M (2010) An energy-preserving muscle tissue model: formulation and compatible discretizations. Int J Multiscale Comput Eng (in press)
    14. Ciarlet PG, Geymonat G (1982) Sur les lois de comportement en 茅lasticit茅 non lin茅aire. CRAS, S茅rie II 295: 423–426
    15. Costa KD, Holmes JW, McCulloch AD (2001) Modeling cardiac mechanical properties in three dimensions. Philos Trans R Soc Lond A 359: 1233–1250
    16. Ecabert O, Smith N (2008) euHeart: integrated cardiac care using patient-specific cardiovascular modeling. SPIE Newsroom. doi:10.1117/2.1200804.1126
    17. Frey PJ, George PL (2008) Mesh Generation. Wiley, London
    18. G枚ktepe S, Acharya S, Wong J, Kuhl E (2011) Computational modeling of passive myocardium. Int J Numer Method Biomed Eng 27: 1–12
    19. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A 367: 3445–3475
    20. Hoteit I, Pham DT, Blum J (2002) A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. J Mar Syst 36(1–2): 101–127
    21. Hu ZH, Metaxas D, Axel L (2003) In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Med Image Anal 7(4): 435–444
    22. Humphrey JD (2002) Cardiovascular solid mechanics—cells tissues and organs. Springer, Berlin
    23. Hunter P et al (2010) A vision and strategy for the virtual physiological human in 2010 and beyond. Philos Trans R Soc A 368: 2595–2614
    24. Huxley AF (1957) Muscle structure and theories of contraction. In: Progress in biophysics and biological chemistry, vol 7. Pergamon press, NY, pp 255–318
    25. Imperiale A, Chabiniok R, Moireau P, Chapelle D (2011) Constitutive parameter estimation methodology using tagged-MRI data. In: Proceedings of functional imaging and modeling of the heart 2011 (FIMH’11). Springer, Berlin
    26. Julier SJ, Uhlmann JK, Durrant-Whyte HF (1995) A new approach for filtering nonlinear systems. In: Proceedings of the American control conference, vol 3. pp 1628–1632
    27. Kalman R (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82: 35–45
    28. Kim RJ, Fieno DS, Parrish TD, Harris K, Chen E-L, Simonetti JO, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100: 1992–2002
    29. Le Tallec P (1994) Numerical methods for nonlinear three-dimensional elasticity. In: Ciarlet PG, Lions J-L (eds) Handbook of numerical analysis, vol 3. Elsevier, Amsterdam
    30. Liu H, Shi P (2009) Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart. IEEE Trans Biomed Eng 56(2): 378–389
    31. Mansi T, Peyrat J-M, Sermesant M, Delingette H, Blanc J, Boudjemline Y, Ayache N (2009) Physically-constrained diffeomorphic demons for the estimation of 3D myocardium strain from Cine-MRI. In: Proceedings of functional imaging and modeling of the heart 2009 (FIMH’09), vol 5528 of LNCS. Springer, Berlin, pp 201–210
    32. Moireau P, Chapelle D (2011) Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems. ESAIM: COCV 17:380–405
    33. Moireau P, Chapelle D, Le Tallec P (2008) Joint state and parameter estimation for distributed mechanical systems. Comput Method Appl Mech Eng 197(6–8): 659–677
    34. Moireau P, Chapelle D, Le Tallec P (2009) Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging. Inverse problems 25(3)
    35. Moireau P, Nan X, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau J-F (2011) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol (in press)
    36. Nash MP, Hunter PJ (2000) Computational mechanics of the heart – from tissue structure to ventricular function. J Elast 61: 113–141
    37. Papademetris X, Sinusas AJ, Dione DP, Constable RT, Duncan JS (2002) Estimation of 3D left ventricular deformation from medical images using biomechanical models. IEEE Trans Med Imaging 21(7): 786–800
    38. Peters J, Ecabert O, Meyer C, Kneser R, Weese J (2010) Optimizing boundary detection via simulated search with applications to multi-modal heart segmentation. Med Image Anal 14(70–84)
    39. Pham DT (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon Weather Rev 129(5): 1194–1207
    40. Raghavan K, Yagle A (1994) Forward and inverse problems in elasticity imaging of soft tissues. IEEE Trans Nucl Sci 41(4): 1639–1648
    41. Rivlin RS, Ericksen JL (1955) Stress-deformation relations for isotropic materials. J Ration Mech Anal 4: 323–425
    42. Sachse FB, Frech R, Werner CD, D枚ssel O (1999) A model based approach to assignment of myocardial fibre orientation. Comput Cardiol 26: 145–148
    43. Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84(28): 1743–1759
    44. Schaerer J, Casta C, Pousin J, Clarysse P (2010) A dynamic elastic model for segmentation and tracking of the heart in MR image sequences. Med Image Anal 14: 738–749
    45. Sermesant M, Billet F, Chabiniok R, Mansi T, Chinchapatnam P, Moireau P, Peyrat JM, Rhode K, Ginks M, Lambiase P, Arridge S, Delingette H, Sorine M, Rinaldi A, Chapelle D, Razavi R, Ayache N (2009) Personalised electromechanical model of the heart for the prediction of the acute effects of cardiac resynchronisation therapy. In: Proceedings of functional imaging and modeling of the heart 2009 (FIMH’09), vol 5528 of LNCS. Springer, Berlin, pp 239–248
    46. Sermesant M, Moireau P, Camara O, Sainte-Marie J, Andriantsimiavona R, Cimrman R, Hill DL, Chapelle D, Razavi R (2006) Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Med Image Anal 10(4): 642–656
    47. Simon D (2006) Optimal state estimation: Kalman, H ∞, and nonlinear approaches. Wiley, London
    48. Sundnes J, Lines GT, Cai X, Nielsen BF, Mardal K-A, Tveito A (2006) Computing the electrical activity in the heart. Springer, Berlin
    49. Toussaint N, Mansi T, Delingette H, Ayache N, Sermesant M (2008) An integrated platform for dynamic cardiac simulation and image processing: application to personalised tetralogy of Fallot simulation. In: Proceedings of Eurographics workshop on visual computing for biomedicine (VCBM). Delft, The Netherlands
    50. Toussaint N, Souplet JC, Fillard P (2007) MedINRIA: medical image navigation and research tool by INRIA. In: Proceedings of MICCAI’07 workshop on interaction in medical image analysis and visualization
    51. Wang L, Zhang H, Wong KCL, Shi P (2009) A reduced-rank square root filtering framework for noninvasive functional imaging of volumetric cardiac electrical activity. In: Acoustics, speech and signal processing, 2009. IEEE Int Conf ICASSP 2009 pp 533–536
    52. Xi J, Lamata P, Lee J, Moireau P, Chapelle D, Smith N (2011) Myocardial transversely isotropic material parameter estimation from in-silico measurements based on reduced-order unscented Kalman filter. J Mech Behav Biomed Mater (in press)
    53. Zhang Q (2002) Adaptive observer for MIMO linear time varying systems. IEEE Trans Automat Contr 3: 525–529
  • 作者单位:1. INRIA, Rocquencourt, B.P. 105, 78153 Le Chesnay, France2. AP-HP H么pital Henri Mondor, Universit茅 Paris-Est Cr茅teil, Cr茅teil, France
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Biomedical Engineering
    Mechanics
    Biophysics and Biomedical Physics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1617-7940
文摘
The objective of this paper is to propose and assess an estimation procedure—based on data assimilation principles—well suited to obtain some regional values of key biophysical parameters in a beating heart model, using actual Cine-MR images. The motivation is twofold: (1) to provide an automatic tool for personalizing the characteristics of a cardiac model in order to achieve predictivity in patient-specific modeling and (2) to obtain some useful information for diagnosis purposes in the estimated quantities themselves. In order to assess the global methodology, we specifically devised an animal experiment in which a controlled infarct was produced and data acquired before and after infarction, with an estimation of regional tissue contractility—a key parameter directly affected by the pathology—performed for every measured stage. After performing a preliminary assessment of our proposed methodology using synthetic data, we then demonstrate a full-scale application by first estimating contractility values associated with 6 regions based on the AHA subdivision, before running a more detailed estimation using the actual AHA segments. The estimation results are assessed by comparison with the medical knowledge of the specific infarct, and with late enhancement MR images. We discuss their accuracy at the various subdivision levels, in the light of the inherent modeling limitations and of the intrinsic information contents featured in the data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700