Accurate measurement of phase equilibria and dissociation enthalpies of HFC-134a hydrates in the presence of NaCl for potential application in desalination
详细信息    查看全文
  • 作者:Dongyoung Lee ; Yohan Lee ; Seungmin Lee…
  • 关键词:Gas Hydrate ; Desalination ; HFC ; 134a ; Dissociation Enthalpy ; Phase Behavior
  • 刊名:Korean Journal of Chemical Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:33
  • 期:4
  • 页码:1425-1430
  • 全文大小:270 KB
  • 参考文献:1.E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, CRC Press/Taylor & Francis, Boca Raton, FL (2008).
    2.C. Giavarini and K. Hester, Gas Hydrates: Immense Energy Potential and Environmental Challenges, Springer, London (2011).CrossRef
    3.P. Linga, A. Adeyemo and P. Englezos, Environ. Sci. Technol., 42, 315 (2007).CrossRef
    4.S. Watanabe, S. Takahashi, H. Mizubayashi, S. Murata and H. Murakami, Proceedings of the 6th International Conference on Gas Hydrates, 6 (2008).
    5.D. Corak, T. Barth, S. Høiland, T. Skodvin, R. Larsen and T. Skjetne, Desalination, 278, 268 (2011).CrossRef
    6.X.-S. Li, C.-G. Xu, Z.-Y. Chen and H.-J. Wu, Energy, 36, 1394 (2011).CrossRef
    7.S. Park, S. Lee, Y. Lee and Y. Seo, Environ. Sci. Technol., 47, 7571 (2013).CrossRef
    8.S. Han, J.-Y. Shin, Y.-W. Rhee and S.-P. Kang, Desalination, 354, 17 (2014).CrossRef
    9.Y. Lee, Y. Kim and Y. Seo, Environ. Sci. Technol., 49, 8899 (2015).CrossRef
    10.S. Kim, S.-P. Kang and Y. Seo, Chem. Eng. J., 276, 205 (2015).CrossRef
    11.H. Lee, H. Ryu, J.-H. Lim, J.-O. Kim, J. D. Lee and S. Kim, Desalin. Water Treat. (2015), DOI:10.1080/19443994.2015.1049405.
    12.J.-H. Cha and Y. Seol, ACS Sustainable Chem. Eng., 1, 1218 (2013).CrossRef
    13.Y. Seo, H. Tajima, A. Yamasaki, S. Takeya, T. Ebinuma and F. Kiyono, Environ. Sci. Technol., 38, 4635 (2004).CrossRef
    14.I. Cha, S. Lee, J. D. Lee, G.-W. Lee and Y. Seo, Environ. Sci. Technol., 44, 6117 (2010).CrossRef
    15.Y. Seo, D. Moon, C. Lee, J.-W. Park, B.-S. Kim, G.-W. Lee, P. Dotel, J.-W. Lee, M. Cha and J.-H. Yoon, Environ. Sci. Technol., 49, 6045 (2015).CrossRef
    16.D. Liang, K. Guo, R. Wang and S. Fan, Fluid Phase Equilib., 187, 61 (2001).CrossRef
    17.T. Akiya, T. Shimazaki, M. Oowa, M. Matsuo and Y. Yoshida, Int. J. Therm., 20, 1753 (1999).CrossRef
    18.S. Hashimoto, T. Makino, Y. Inoue and K. Ohgaki, J. Chem. Eng. Data, 55, 4951 (2010).CrossRef
    19.S. Takeya, A. Hori, T. Hondoh and T. Uchida, J. Phys. Chem. B., 104, 4164 (2000).CrossRef
    20.P. Buchanan, A. K. Soper, H. Thompson, R. E. Westacott, J. L. Creek, G. Hobson and C. A. Koh, J. Chem. Phys., 123, 164507 (2005).CrossRef
    21.G. Hakvoort, J. Therm. Anal. Calorim., 41, 1551 (1994).CrossRef
    22.A. Gupta, J. Lachance, E. D. Sloan and C. A. Koh, Chem. Eng. Sci., 63, 5848 (2008).CrossRef
    23.Y. Seo and H. Lee, J. Phys. Chem. B., 106, 9668 (2002).CrossRef
    24.S. Lee, Y. Lee, S. Park, Y. Kim, J. D. Lee and Y. Seo, J. Phys. Chem. B., 116, 9075 (2012).CrossRef
    25.S. Lee, Y. Lee, J. Lee, H. Lee and Y. Seo, Environ. Sci. Technol., 47, 13184 (2013).CrossRef
    26.Y. Lee, S. Lee, J. Lee and Y. Seo, Chem. Eng. J., 246, 20 (2014).CrossRef
    27.Y. Lee, Y. Kim, J. Lee, H. Lee and Y. Seo, Appl. Energy, 150, 120 (2015).CrossRef
    28.T. Sugahara, S. Murayama, S. Hashimoto and K. Ohgaki, Fluid Phase Equilib., 233, 190 (2005).CrossRef
    29.A. H. Mohammadi, R. Anderson and B. Tohidi, AIChE J., 51, 2825 (2005).CrossRef
    30.T. Uchida, R. Ohmura, I. Y. Ikeda, J. Nagao, S. Takeya and A. Hori, J. Phys. Chem. B., 110, 4583 (2006).CrossRef
    31.S.-P. Kang, J.-W. Lee and H.-J. Ryu, Fluid Phase Equilib., 274, 68 (2008).CrossRef
    32.Y. Seo, S.-P. Kang, S. Lee and H. Lee, J. Chem. Eng. Data, 53, 2833 (2008).CrossRef
    33.S. Lee, Y. Lee, S. Park and Y. Seo, J. Chem. Eng. Data, 55, 5883 (2010).CrossRef
    34.B. Tohidi, R. Burgass, A. Danesh, K. Østergaard and A. Todd, Ann. N. Y. Acad. Sci., 912, 924 (2000).CrossRef
    35.M. Mohammad-Taheri, A. Z. Moghaddam, K. Nazari and N. G. Zanjani, Fluid Phase Equilib., 338, 257 (2013).CrossRef
    36.M. Cha, Y. Hu and A. K. Sum, Fluid Phase Equilib., In Press (2015).
    37.D. Dalmazzone, M. Kharrat, V. Lachet, B. Fouconnier and D. Clausse, J. Therm. Anal. Calorim., 70, 493 (2002).CrossRef
    38.S. Lee, S. Park, Y. Lee, J. Lee, H. Lee and Y. Seo, Langmuir., 27, 10597 (2011).CrossRef
    39.P. G. Lafond, K. A. Olcott, E. D. Sloan, C. A. Koh and A. K. Sum, J. Chem. Thermodyn., 48, 1 (2012).CrossRef
    40.W. Lin, D. Dalmazzone, W. Fürst, A. Delahaye, L. Fournaison and P. Clain, J. Chem. Thermodyn., 61, 132 (2013).CrossRef
    41.S. Lee and Y. Seo, Energy Fuels, 24, 6074 (2010).CrossRef
  • 作者单位:Dongyoung Lee (1)
    Yohan Lee (1)
    Seungmin Lee (1) (2)
    Yongwon Seo (1)

    1. School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
    2. Offshore Plant Resources R&D Center, Korea Institute of Industrial Technology, Busan, 46749, Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Industrial Chemistry and Chemical Engineering
    Catalysis
    Materials Science
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1975-7220
文摘
Phase equilibria, structure identification, and dissociation enthalpies of HFC-134a hydrates in the presence of NaCl are investigated for potential application in desalination. To verify the influence of NaCl on the thermodynamic hydrate stability of the HFC-134a hydrate, the three-phase (hydrate (H) - liquid water (L W ) - vapor (V)) equilibria of the HFC-134a+NaCl (0, 3.5, and 8.0 wt%)+water systems are measured by both a conventional isochoric (pVT) method and a stepwise differential scanning calorimeter (DSC) method. Both pVT and DSC methods demonstrate reliable and consistent hydrate phase equilibrium points of the HFC-134a hydrates in the presence of NaCl. The HFC-134a hydrate is identified as sII via powder X-ray diffraction. The dissociation enthalpies (ΔH d ) of the HFC-134a hydrates in the presence of NaCl are also measured with a high pressure micro-differential scanning calorimeter. The salinity results in significant thermodynamic inhibition of the HFC-134a hydrates, whereas it has little effect on the dissociation enthalpy of the HFC-134a hydrates. The experimental results obtained in this study can be utilized as foundational data for the hydrate-based desalination process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700