Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome
详细信息    查看全文
  • 作者:Elisabeth E. Mlynarski ; Michael Xie ; Deanne Taylor ; Molly B. Sheridan…
  • 刊名:Human Genetics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:135
  • 期:3
  • 页码:273-285
  • 全文大小:907 KB
  • 参考文献:Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289–300
    Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835. doi:10.​1038/​nrg1710 CrossRef PubMed
    Buikema JW, Zwetsloot P-PM, Doevendans PA, Domian IJ, Sluijter JP (2014) Wnt/β-catenin signaling during cardiac development and repair. J Cardiovasc Dev Dis 1:98–110CrossRef
    Burn J, Goodship J (1996) Developmental genetics of the heart. Curr Opin Genet Dev 6:322–325CrossRef PubMed
    Carlson C et al (1997) Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients. Am J Hum Genet 61:620–629. doi:10.​1086/​515508 PubMedCentral CrossRef PubMed
    Christiansen J et al (2004) Chromosome 1q21.1 contiguous gene deletion is associated with congenital heart disease. Circ Res 94:1429–1435. doi:10.​1161/​01.​RES.​0000130528.​72330.​5c CrossRef PubMed
    Coe BP et al (2014) Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet 46:1063–1071. doi:10.​1038/​ng.​3092 PubMedCentral CrossRef PubMed
    Cordell HJ et al (2013) Genome-wide association study identifies loci on 12q24 and 13q32 associated with tetralogy of Fallot. Hum Mol Genet 22:1473–1481. doi:10.​1093/​hmg/​dds552 PubMedCentral CrossRef PubMed
    Di Felice V, Zummo G (2009) Tetralogy of fallot as a model to study cardiac progenitor cell migration and differentiation during heart development. Trends Cardiovasc Med 19:130–135. doi:10.​1016/​j.​tcm.​2009.​07.​004 CrossRef PubMed
    Edelmann L, Pandita RK, Morrow BE (1999) Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. Am J Hum Genet 64:1076–1086PubMedCentral CrossRef PubMed
    Emanuel BS (2008) Molecular mechanisms and diagnosis of chromosome 22q11.2 rearrangements. Dev Disabil Res Rev 14:11–18. doi:10.​1002/​ddrr.​3 PubMedCentral CrossRef PubMed
    Erdogan F et al (2008) High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated congenital heart disease. J Med Genet 45:704–709. doi:10.​1136/​jmg.​2008.​058776 CrossRef PubMed
    Gai X et al (2010) CNV Workshop: an integrated platform for high-throughput copy number variation discovery and clinical diagnostics. BMC Bioinformatics 11:74. doi:10.​1186/​1471-2105-11-74 PubMedCentral CrossRef PubMed
    Gai X et al (2012) Rare structural variation of synapse and neurotransmission genes in autism. Molecular Psychiatry 17:402–411. doi:10.​1038/​mp.​2011.​10 PubMedCentral CrossRef PubMed
    Geng J et al (2014) Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genom 15:1127. doi:10.​1186/​1471-2164-15-1127 CrossRef
    Giovannone D et al (2012) Slits affect the timely migration of neural crest cells via Robo receptor. Dev Dyn 241:1274–1288. doi:10.​1002/​dvdy.​23817 PubMedCentral CrossRef PubMed
    Girirajan S et al (2013) Global increases in both common and rare copy number load associated with autism. Hum Mol Genet 22:2870–2880. doi:10.​1093/​hmg/​ddt136 PubMedCentral CrossRef PubMed
    Glessner JT et al (2014) Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res 115:884–896. doi:10.​1161/​CIRCRESAHA.​115.​304458 PubMedCentral CrossRef PubMed
    Goldmuntz E, Driscoll DA, Emanuel BS, McDonald-McGinn D, Mei M, Zackai E, Mitchell LE (2009) Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome Birth defects research Part A. Clin Mol Teratol 85:125–129. doi:10.​1002/​bdra.​20501 CrossRef
    Goodship JA et al (2012) A common variant in the PTPN11 gene contributes to the risk of tetralogy of Fallot. Circ Cardiovasc Genet 5:287–292. doi:10.​1161/​CIRCGENETICS.​111.​962035 PubMedCentral CrossRef PubMed
    Greenway SC et al (2009) De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 41:931–935. doi:10.​1038/​ng.​415 PubMedCentral CrossRef PubMed
    Keller M et al (2014) Burden of copy number variation in common variable immunodeficiency. Clin Exp Immunol 177:269–271. doi:10.​1111/​cei.​12255 PubMedCentral CrossRef PubMed
    Lage K et al (2010) Dissecting spatio-temporal protein networks driving human heart development and related disorders. Mol Syst Biol 6:381. doi:10.​1038/​msb.​2010.​36 PubMedCentral CrossRef PubMed
    Lalani SR et al (2013) Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities. Eur J Hum Genet: EJHG 21:173–181. doi:10.​1038/​ejhg.​2012.​155 PubMedCentral CrossRef PubMed
    Lauriol J, Jaffre F, Kontaridis MI (2015) The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease. Semin Cell Dev Biol 37:73–81. doi:10.​1016/​j.​semcdb.​2014.​09.​013 CrossRef PubMed
    Li Y et al (2015) Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 521:520–524. doi:10.​1038/​nature14269 PubMedCentral CrossRef PubMed
    McDonald-McGinn DM, Sullivan KE (2011) Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Med (Baltimore) 90:1–18. doi:10.​1097/​MD.​0b013e3182060469​ CrossRef
    Mlynarski EE et al (2015) Copy-number variation of the glucose transporter gene SLC2A3 and congenital heart defects in the 22q11.2 deletion syndrome. Am J Hum Genet 96:753–764. doi:10.​1016/​j.​ajhg.​2015.​03.​007 PubMedCentral CrossRef PubMed
    Perrimon N, Pitsouli C, Shilo BZ (2012) Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol 4:a005975. doi:10.​1101/​cshperspect.​a005975 PubMedCentral CrossRef PubMed
    Robin NH, Shprintzen RJ (2005) Defining the clinical spectrum of deletion 22q11.2. J Pediatr 147:90–96. doi:10.​1016/​j.​jpeds.​2005.​03.​007 CrossRef PubMed
    Ryan AK et al (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 34:798–804PubMedCentral CrossRef PubMed
    Sanchez-Soria P, Camenisch TD (2010) ErbB signaling in cardiac development and disease. Semin Cell Dev Biol 21:929–935. doi:10.​1016/​j.​semcdb.​2010.​09.​011 PubMedCentral CrossRef PubMed
    Sandrin-Garcia P, Abramides DV, Martelli LR, Ramos ES, Richieri-Costa A, Passos GA (2007) Typical phenotypic spectrum of velocardiofacial syndrome occurs independently of deletion size in chromosome 22q11.2. Mol Cell Biochem 303:9–17. doi:10.​1007/​s11010-007-9450-5 CrossRef PubMed
    Serra-Juhe C, Rodriguez-Santiago B, Cusco I, Vendrell T, Camats N, Toran N, Perez-Jurado LA (2012) Contribution of rare copy number variants to isolated human malformations. PLoS One 7:e45530. doi:10.​1371/​journal.​pone.​0045530 PubMedCentral CrossRef PubMed
    Shaikh TH et al (2000) Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet 9:489–501CrossRef PubMed
    Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.​1101/​gr.​1239303 PubMedCentral CrossRef PubMed
    Silversides CK et al (2012) Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet 8:e1002843. doi:10.​1371/​journal.​pgen.​1002843 PubMedCentral CrossRef PubMed
    Soemedi R et al (2012a) Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls. Hum Mol Genet 21:1513–1520. doi:10.​1093/​hmg/​ddr589 PubMedCentral CrossRef PubMed
    Soemedi R et al (2012b) Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 91:489–501. doi:10.​1016/​j.​ajhg.​2012.​08.​003 PubMedCentral CrossRef PubMed
    Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. doi:10.​1073/​pnas.​0506580102 PubMedCentral CrossRef PubMed
    Swaby JA, Silversides CK, Bekeschus SC, Piran S, Oechslin EN, Chow EW, Bassett AS (2011) Complex congenital heart disease in unaffected relatives of adults with 22q11.2 deletion syndrome. Am J Cardiol 107:466–471. doi:10.​1016/​j.​amjcard.​2010.​09.​045 PubMedCentral CrossRef PubMed
    Sznajer Y et al (2007) The spectrum of cardiac anomalies in Noonan syndrome as a result of mutations in the PTPN11 gene. Pediatrics 119:e1325–e1331. doi:10.​1542/​peds.​2006-0211 CrossRef PubMed
    Todorovic V et al (2007) Long form of latent TGF-beta binding protein 1 (Ltbp1L) is essential for cardiac outflow tract septation and remodeling. Development 134:3723–3732. doi:10.​1242/​dev.​008599 CrossRef PubMed
    Tomita-Mitchell A et al (2012) Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics 44:518–541. doi:10.​1152/​physiolgenomics.​00013.​2012 PubMedCentral CrossRef PubMed
    Tzahor E (2007) Wnt/beta-catenin signaling and cardiogenesis: timing does matter. Dev Cell 13:10–13. doi:10.​1016/​j.​devcel.​2007.​06.​006 CrossRef PubMed
    Wang K et al (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17:1665–1674. doi:10.​1101/​gr.​6861907 PubMedCentral CrossRef PubMed
    Wheeler E et al (2013) Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet 45:513–517. doi:10.​1038/​ng.​2607 PubMedCentral CrossRef PubMed
    White PS, Xie HM, Werner P, Glessner J, Latney B, Hakonarson H, Goldmuntz E (2014) Analysis of chromosomal structural variation in patients with congenital left-sided cardiac lesions Birth defects research part A. Clin Mol Teratol. doi:10.​1002/​bdra.​23279
    Wu G, Dawson E, Duong A, Haw R, Stein L (2014) ReactomeFIViz: a cytoscape app for pathway and network-based data analysis. F1000Res 3:146. doi:10.​12688/​f1000research.​4431.​2 PubMedCentral PubMed
    Xie L et al (2014) Rare de novo copy number variants in patients with congenital pulmonary atresia. PLoS One 9:e96471. doi:10.​1371/​journal.​pone.​0096471 PubMedCentral CrossRef PubMed
    Zaidi S et al (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–223. doi:10.​1038/​nature12141 PubMedCentral CrossRef PubMed
    Zarrei M, MacDonald JR, Merico D, Scherer SW (2015) A copy number variation map of the human genome. Nat Rev Genet 16:172–183. doi:10.​1038/​nrg3871 CrossRef PubMed
    Zhu L et al (2006) Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 38:343–349. doi:10.​1038/​ng1721 CrossRef PubMed
  • 作者单位:Elisabeth E. Mlynarski (1)
    Michael Xie (2)
    Deanne Taylor (2)
    Molly B. Sheridan (1)
    Tingwei Guo (3)
    Silvia E. Racedo (3)
    Donna M. McDonald-McGinn (1) (4)
    Eva W. C. Chow (5)
    Jacob Vorstman (6)
    Ann Swillen (7)
    Koen Devriendt (7)
    Jeroen Breckpot (7)
    Maria Cristina Digilio (8)
    Bruno Marino (9)
    Bruno Dallapiccola (8)
    Nicole Philip (10)
    Tony J. Simon (11)
    Amy E. Roberts (12)
    Małgorzata Piotrowicz (13)
    Carrie E. Bearden (14)
    Stephan Eliez (15)
    Doron Gothelf (16) (17)
    Karlene Coleman (18)
    Wendy R. Kates (19)
    Marcella Devoto (1) (20) (21) (4)
    Elaine Zackai (1) (4)
    Damian Heine- Suñer (22)
    Elizabeth Goldmuntz (23) (4)
    Anne S. Bassett (5)
    Bernice E. Morrow (3)
    Beverly S. Emanuel (1) (4)
    The International Chromosome 22q11.2 Consortium

    1. Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
    2. Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
    3. Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
    4. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
    5. Clinical Genetics Research Program, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
    6. Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584, Utrecht, The Netherlands
    7. Center for Human Genetics, University of Leuven, 3000, Leuven, Belgium
    8. Medical Genetics, Bambino Gesù Hospital, 00165, Rome, Italy
    9. Lorillard Spencer Cenci Foundation and Department of Pediatrics, La Sapienza University of Rome, 00165, Rome, Italy
    10. Department of Medical Genetics, Timone Children’s Hospital, AP-HM and University of Mediterranee, 13005, Marseille, France
    11. Department of Psychiatry and Behavioral Sciences, M.I.N.D. Institute, University of California, Sacramento, CA, 95817, USA
    12. Department of Cardiology and Division of Genetics, Boston Children’s Hospital, Boston, MA, 02115, USA
    13. Department of Genetics, Research Institute, Polish Mother’s Memorial Hospital, 93-338, Lodz, Poland
    14. Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90095, USA
    15. Office Médico- Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, 1211, Geneva 8, Switzerland
    16. Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Israel
    17. Sackler Faculty of Medicine, Tel Aviv University, 52621, Tel Aviv, Israel
    18. Marcus Autism Center, Children’s Healthcare of Atlanta, Atlanta, GA, 30322, USA
    19. Department of Psychiatry and Behavioral Sciences, and Program in Neuroscience, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
    20. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
    21. Department of Molecular Medicine, University of Rome La Sapienza, 00185, Rome, Italy
    22. Genetics Department, Hospital Universitari Son Espases, 07020, Palma de Mallorca, Spain
    23. Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Molecular Medicine
    Internal Medicine
    Metabolic Diseases
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1203
文摘
The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS; MIM #192430; 188400) is the most common microdeletion syndrome. The phenotypic presentation of 22q11DS is highly variable; approximately 60–75 % of 22q11DS patients have been reported to have a congenital heart defect (CHD), mostly of the conotruncal type, and/or aortic arch defect. The etiology of the cardiac phenotypic variability is not currently known for the majority of patients. We hypothesized that rare copy number variants (CNVs) outside the 22q11.2 deleted region may modify the risk of being born with a CHD in this sensitized population. Rare CNV analysis was performed using Affymetrix SNP Array 6.0 data from 946 22q11DS subjects with CHDs (n = 607) or with normal cardiac anatomy (n = 339). Although there was no significant difference in the overall burden of rare CNVs, an overabundance of CNVs affecting cardiac-related genes was detected in 22q11DS individuals with CHDs. When the rare CNVs were examined with regard to gene interactions, specific cardiac networks, such as Wnt signaling, appear to be overrepresented in 22q11DS CHD cases but not 22q11DS controls with a normal heart. Collectively, these data suggest that CNVs outside the 22q11.2 region may contain genes that modify risk for CHDs in some 22q11DS patients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700