Analysis of common PTPN1 gene variants in type 2 diabetes, obesity and associated phenotypes in the French population
详细信息    查看全文
  • 作者:Claire Cheyssac (1)
    Cécile Lecoeur (1)
    Aurélie Dechaume (1)
    Amina Bibi (2)
    Guillaume Charpentier (3)
    Beverley Balkau (4)
    Michel Marre (5)
    Philippe Froguel (1) (2)
    Fernando Gibson (2)
    Martine Vaxillaire (1)
  • 刊名:BMC Medical Genetics
  • 出版年:2006
  • 出版时间:December 2006
  • 年:2006
  • 卷:7
  • 期:1
  • 全文大小:866KB
  • 参考文献:1. Seely BL, Staubs PA, Reichart DR, Berhanu P, Milarski KL, Saltiel AR, Kusari J, Olefsky JM: Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. / Diabetes 1996, 45:1379-5. CrossRef
    2. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M: Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. / J Biol Chem 2000, 275:4283-. CrossRef
    3. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, Kim YB, Elmquist JK, Tartaglia LA, Kahn BB, Neel BG: PTP1B regulates leptin signal transduction in vivo. / Dev Cell 2002, 2:489-5. CrossRef
    4. Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ, Kennedy BP, Tremblay ML: Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. / Dev Cell 2002, 2:497-03. CrossRef
    5. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP: Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. / Science 1999, 283:1544-. CrossRef
    6. Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB: Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. / Mol Cell Biol 2000, 20:5479-9. CrossRef
    7. Rondinone CM, Trevillyan JM, Clampit J, Gum RJ, Berg C, Kroeger P, Frost L, Zinker BA, Reilly R, Ulrich R, Butler M, Monia BP, Jirousek MR, Waring JF: Protein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis. / Diabetes 2002, 51:2405-1. CrossRef
    8. Lembertas AV, Perusse L, Chagnon YC, Fisler JS, Warden CH, Purcell DA-Huynh, Dionne FT, Gagnon J, Nadeau A, Lusis AJ, Bouchard C: Identification of an obesity quantitative trait locus on mouse chromosome 2 and evidence of linkage to body fat and insulin on the human homologous region 20q. / J Clin Invest 1997, 100:1240-. CrossRef
    9. Bowden DW, Sale M, Howard TD, Qadri A, Spray BJ, Rothschild CB, Akots G, Rich SS, Freedman BI: Linkage of genetic markers on human chromosomes 20 and 12 to NIDDM in Caucasian sib pairs with a history of diabetic nephropathy. / Diabetes 1997, 46:882-. CrossRef
    10. Hunt SC, Abkevich V, Hensel CH, Gutin A, Neff CD, Russell DL, Tran T, Hong X, Jammulapati S, Riley R, Weaver-Feldhaus J, Macalma T, Richards MM, Gress R, Francis M, Thomas A, Frech GC, Adams TD, Shattuck D, Stone S: Linkage of body mass index to chromosome 20 in Utah pedigrees. / Hum Genet 2001, 109:279-5. CrossRef
    11. Collaku A, Rankinen T, Rice T, Leon AS, Rao DC, Skinner JS, Wilmore JH, Bouchard C: A genome-wide linkage scan for dietary energy and nutrient intakes: the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) Family Study. / Am J Clin Nutr 2004, 79:881-.
    12. Dong C, Wang S, Li WD, Li D, Zhao H, Price RA: Interacting genetic loci on chromosomes 20 and 10 influence extreme human obesity. / Am J Hum Genet 2003, 72:115-4. CrossRef
    13. Zouali H, Hani EH, Philippi A, Vionnet N, Beckmann JS, Demenais F, Froguel P: A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene. / Hum Mol Genet 1997, 6:1401-. CrossRef
    14. Bento JL, Palmer ND, Mychaleckyj JC, Lange LA, Langefeld CD, Rich SS, Freedman BI, Bowden DW: Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. / Diabetes 2004, 53:3007-2. CrossRef
    15. Palmer ND, Bento JL, Mychaleckyj JC, Langefeld CD, Campbell JK, Norris JM, Haffner SM, Bergman RN, Bowden DW: Association of protein tyrosine phosphatase 1B gene polymorphisms with measures of glucose homeostasis in Hispanic Americans: the insulin resistance atherosclerosis study (IRAS) family study. / Diabetes 2004, 53:3013-. CrossRef
    16. Florez JC, Agapakis CM, Burtt NP, Sun M, Almgren P, Rastam L, Tuomi T, Gaudet D, Hudson TJ, Daly MJ, Ardlie KG, Hirschhorn JN, Groop L, Altshuler D: Association Testing of the Protein Tyrosine Phosphatase 1B Gene (PTPN1) With Type 2 Diabetes in 7,883 People. / Diabetes 2005, 54:1884-1. CrossRef
    17. Fumeron F, Aubert R, Siddiq A, Betoulle D, Pean F, Hadjadj S, Tichet J, Wilpart E, Chesnier MC, Balkau B, Froguel P, Marre M: Adiponectin gene polymorphisms and adiponectin levels are independently associated with the development of hyperglycemia during a 3-year period: the epidemiologic data on the insulin resistance syndrome prospective study. / Diabetes 2004, 53:1150-. CrossRef
    18. De la Vega FM, Lazaruk KD, Rhodes MD, Wenz MH: Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. / Mutat Res 2005, 573:111-5.
    19. Sasieni PD: From genotypes to genes: doubling the sample size. / Biometrics 1997, 53:1253-1. CrossRef
    20. Mantel N, Haenszel W: Statistical aspects of the analysis of data from retrospective studies of disease. / J Natl Cancer Inst 1959, 22:719-8.
    21. Horvath S, Xu X, Laird NM: The family based association test method: strategies for studying general genotype–phenotype associations. / Eur J Hum Genet 2001, 9:301-. CrossRef
    22. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. / Bioinformatics 2005, 21:263-. CrossRef
    23. Tregouet DA, Barbaux S, Escolano S, Tahri N, Golmard JL, Tiret L, Cambien F: Specific haplotypes of the P-selectin gene are associated with myocardial infarction. / Hum Mol Genet 2002, 11:2015-3. CrossRef
    24. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG: Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. / Hum Hered 2002, 53:79-1. CrossRef
    25. Dudbridge F: Pedigree disequilibrium tests for multilocus haplotypes. / Genet Epidemiol 2003, 25:115-1. CrossRef
    26. Gauderman WJ: Sample size requirements for association studies of gene-gene interaction. / Am J Epidemiol 2002, 155:478-4. CrossRef
    27. Olivier M, Hsiung CA, Chuang LM, Ho LT, Ting CT, Bustos VI, Lee TM, De Witte A, Chen YD, Olshen R, Rodriguez B, Wen CC, Cox DR: Single nucleotide polymorphisms in protein tyrosine phosphatase 1beta (PTPN1) are associated with essential hypertension and obesity. / Hum Mol Genet 2004, 13:1885-2. CrossRef
    28. Echwald SM, Bach H, Vestergaard H, Richelsen B, Kristensen K, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O: A P387L variant in protein tyrosine phosphatase-1B (PTP-1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro. / Diabetes 2002, 51:1-. CrossRef
    29. Spencer-Jones NJ, Wang X, Snieder H, Spector TD, Carter ND, D O'Dell S: Protein Tyrosine Phosphatase-1B Gene PTPN1: Selection of Tagging Single Nucleotide Polymorphisms and Association With Body Fat, Insulin Sensitivity, and the Metabolic Syndrome in a Normal Female Population. / Diabetes 2005, 54:3296-304. CrossRef
    30. Kipfer-Coudreau S, Eberle D, Sahbatou M, Bonhomme A, Guy-Grand B, Froguel P, Galan P, Basdevant A, Clement K: Single nucleotide polymorphisms of protein tyrosine phosphatase 1B gene are associated with obesity in morbidly obese French subjects. / Diabetologia 2004, 47:1278-4. CrossRef
    31. Gouni-Berthold I, Giannakidou E, Muller-Wieland D, Faust M, Kotzka J, Berthold HK, Krone W: The Pro387Leu variant of protein tyrosine phosphatase-1B is not associated with diabetes mellitus type 2 in a German population. / J Intern Med 2005, 257:272-0. CrossRef
    32. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2350/7/44/prepub
  • 作者单位:Claire Cheyssac (1)
    Cécile Lecoeur (1)
    Aurélie Dechaume (1)
    Amina Bibi (2)
    Guillaume Charpentier (3)
    Beverley Balkau (4)
    Michel Marre (5)
    Philippe Froguel (1) (2)
    Fernando Gibson (2)
    Martine Vaxillaire (1)

    1. CNRS UMR 8090, Institut de Biologie de Lille -Institut Pasteur, 59019, Lille, France
    2. Imperial College Genome Centre and Section of Genomic Medicine, Hammersmith campus, Imperial College, W2 0NN, London, UK
    3. Service de diabétologie, Centre Hospitalier Sud-Francilien, 91106, Corbeil-Essonnes, France
    4. INSERM U780-IFR69, Research in Epidemiology and Biostatistics, 94807, Villejuif, France
    5. INSERM U695, Faculté de Médecine Xavier Bichat, Paris, France
  • ISSN:1471-2350
文摘
Background The protein tyrosine phosphatase-1B, a negative regulator for insulin and leptin signalling, potentially modulates glucose and energy homeostasis. PTP1B is encoded by the PTPN1 gene located on chromosome 20q13 showing linkage with type 2 diabetes (T2D) in several populations. PTPN1 gene variants have been inconsistently associated with T2D, and the aim of our study was to investigate the effect of PTPN1 genetic variations on the risk of T2D, obesity and on the variability of metabolic phenotypes in the French population. Methods Fourteen single nucleotide polymorphisms (SNPs) spanning the PTPN1 locus were selected from previous association reports and from HapMap linkage disequilibrium data. SNPs were evaluated for association with T2D in two case-control groups with 1227 cases and 1047 controls. Association with moderate and severe obesity was also tested in a case-control study design. Association with metabolic traits was evaluated in 736 normoglycaemic, non-obese subjects from a general population. Five SNPs showing a trend towards association with T2D, obesity or metabolic parameters were investigated for familial association. Results From 14 SNPs investigated, only SNP rs914458, located 10 kb downstream of the PTPN1 gene significantly associated with T2D (p = 0.02 under a dominant model; OR = 1.43 [1.06-.94]) in the combined sample set. SNP rs914458 also showed association with moderate obesity (allelic p = 0.04; OR = 1.2 [1.01-.43]). When testing for association with metabolic traits, two strongly correlated SNPs, rs941798 and rs2426159, present multiple consistent associations. SNP rs2426159 exhibited evidence of association under a dominant model with glucose homeostasis related traits (p = 0.04 for fasting insulin and HOMA-B) and with lipid markers (0.02 = p = 0.04). Moreover, risk allele homozygotes for this SNP had an increased systolic blood pressure (p = 0.03). No preferential transmission of alleles was observed for the SNPs tested in the family sample. Conclusion In our study, PTPN1 variants showed moderate association with T2D and obesity. However, consistent associations with metabolic variables reflecting insulin resistance and dyslipidemia are found for two intronic SNPs as previously reported. Thus, our data indicate that PTPN1 variants may modulate the lipid profile, thereby influencing susceptibility to metabolic disease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700