Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study
详细信息    查看全文
  • 作者:Martine Vaxillaire (1) (2) (3)
    Lo?c Yengo (1) (2) (3)
    Stéphane Lobbens (1) (2) (3)
    Ghislain Rocheleau (1) (2) (3)
    Elodie Eury (1) (2) (3)
    Olivier Lantieri (4)
    Michel Marre (5) (6)
    Beverley Balkau (7) (8)
    Amélie Bonnefond (1) (2) (3)
    Philippe Froguel (1) (2) (3) (9)
  • 关键词:DESIR ; Genotype risk score ; Hyperglycaemia ; Impaired fasting glucose ; Incidence analysis ; Metabochip ; Quantitative metabolic trait ; Type 2 diabetes
  • 刊名:Diabetologia
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:57
  • 期:8
  • 页码:1601-1610
  • 全文大小:232 KB
  • 参考文献:1. Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579-89 CrossRef
    2. Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105-16 CrossRef
    3. Bonnefond A, Froguel P, Vaxillaire M (2010) The emerging genetics of type 2 diabetes. Trends Mol Med 16:407-16 CrossRef
    4. Pal A, McCarthy MI (2013) The genetics of type 2 diabetes and its clinical relevance. Clin Genet 83:297-06 CrossRef
    5. Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981-90 CrossRef
    6. Scott RA, Lagou V, Welch RP et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44:991-005 CrossRef
    7. Wilson PWF, Meigs JB, Sullivan L et al (2007) Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 167:1068-074 CrossRef
    8. Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220-232 CrossRef
    9. Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208-219 CrossRef
    10. Cauchi S, Proen?a C, Choquet H et al (2008) Analysis of novel risk loci for type 2 diabetes in a general French population: the DESIR. study. J Mol Med (Berl) 86:341-48 CrossRef
    11. Hivert M-F, Jablonski KA, Perreault L et al (2011) Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes 60:1340-348 CrossRef
    12. Talmud PJ, Hingorani AD, Cooper JA et al (2010) Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340:b4838 CrossRef
    13. Vassy JL, Meigs JB (2012) Is genetic testing useful to predict type 2 diabetes? Best Pract Res Clin Endocrinol Metab 26:189-01 CrossRef
    14. Balkau B, Lange C, Fezeu L et al (2008) Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 31:2056-061 CrossRef
    15. de Miguel-Yanes JM, Shrader P, Pencina MJ et al (2011) Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 34:121-25 CrossRef
    16. Vassy JL, Shrader P, Jonsson A et al (2011) Association between parental history of diabetes and type 2 diabetes genetic risk scores in the PPP-Botnia and Framingham Offspring Studies. Diabetes Res Clin Pract 93:e76–e79 CrossRef
    17. Mühlenbruch K, Jeppesen C, Joost H-G et al (2013) The value of genetic information for diabetes risk prediction—differences according to sex, age, family history and obesity. PLoS One 8:e64307 CrossRef
    18. Andersson EA, Allin KH, Sandholt CH et al (2013) Genetic risk score of 46 type 2 diabetes risk variants associates with changes in plasma glucose and estimates of pancreatic β-cell function over 5 years of follow-up. Diabetes 62:3610-617 CrossRef
    19. Renstr?m F, Shungin D, Johansson I et al (2011) Genetic predisposition to long-term nondiabetic deteriorations in glucose homeostasis: ten-year follow-up of the GLACIER study. Diabetes 60:345-54 CrossRef
    20. Walford GA, Green T, Neale B et al (2011) Common genetic variants differentially influence the transition from clinically defined states of fasting glucose metabolism. Diabetologia 55:331-39 CrossRef
    21. Shaye K, Amir T, Shlomo S, Yechezkel S (2012) Fasting glucose levels within the high normal range predict cardiovascular outcome. Am Heart J 164:111-16 CrossRef
    22. Vaxillaire M, Veslot J, Dina C et al (2008) Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 57:244-54 CrossRef
    23. Balkau B, Eschwege E, Tichet J, Marre M (1997) Proposed criteria for the diagnosis of diabetes: evidence from a French epidemiological study (D.E.S.I.R.). Diabetes Metab 23:428-34
    24. Genuth S, Alberti KGMM, Bennett P et al (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160-167 CrossRef
    25. Voight BF, Kang HM, Ding J et al (2012) The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 8:e1002793 CrossRef
    26. Tam CH, Ho JS, Wang Y et al (2013) Use of Net Reclassification Improvement (NRI) method confirms the utility of combined genetic risk score to predict type 2 diabetes. PLoS One 8(12):e83093 CrossRef
    27. Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515-26 CrossRef
    28. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157-72 CrossRef
    29. Pencina MJ, D’Agostino RB Sr, Demler OV (2012) Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. Stat Med 31:101-13 CrossRef
    30. Jensen AC, Barker A, Kumari M et al (2011) Associations of common genetic variants with age-related changes in fasting and postload glucose: evidence from 18 years of follow-up of the Whitehall II cohort. Diabetes 60:1617-623 CrossRef
    31. Katoh S, Lehtovirta M, Kaprio J et al (2005) Genetic and environmental effects on fasting and postchallenge plasma glucose and serum insulin values in Finnish twins. J Clin Endocrinol Metab 90:2642-647 CrossRef
    32. Kelliny C, Ekelund U, Andersen LB et al (2009) Common genetic determinants of glucose homeostasis in healthy children: the European Youth Heart Study. Diabetes 58:2939-945 CrossRef
    33. Tabak AG, Jokela M, Akbaraly TN, Brunner EJ, Kivim?ki M, Witte DR (2009) Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373:2215-221 CrossRef
    34. Gautier A, Roussel R, Lange C et al (2011) Effects of genetic susceptibility for type 2 diabetes on the evolution of glucose homeostasis traits before and after diabetes diagnosis: data from the D.E.S.I.R. Study. Diabetes 60:2654-663 CrossRef
    35. Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49:2201-207 CrossRef
    36. Van’t Riet E, Dekker JM, Sun Q et al (2010) Role of adiposity and lifestyle in the relationship between family history of diabetes and 20 year incidence of type 2 diabetes in U.S. women. Diabetes Care 33:763-67 CrossRef
    37. InterAct Consortium (2013) The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: the EPIC-InterAct study. Diabetologia 56:60-9 CrossRef
    38. Eichler EE, Flint J, Gibson G et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446-50 CrossRef
    39. Bonnefond A, Clément N, Fawcett K et al (2012) Rare / MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 44:297-01 CrossRef
    40. Agarwala V, Flannick J, Sunyaev S, GoT2D Consortium, Altshuler D (2013) Evaluating empirical bounds on complex disease genetic architecture. Nat Genet 45:1418-427 CrossRef
    41. Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21:2191-192 CrossRef
  • 作者单位:Martine Vaxillaire (1) (2) (3)
    Lo?c Yengo (1) (2) (3)
    Stéphane Lobbens (1) (2) (3)
    Ghislain Rocheleau (1) (2) (3)
    Elodie Eury (1) (2) (3)
    Olivier Lantieri (4)
    Michel Marre (5) (6)
    Beverley Balkau (7) (8)
    Amélie Bonnefond (1) (2) (3)
    Philippe Froguel (1) (2) (3) (9)

    1. European Genomic Institute for Diabetes, FR 3508, Lille, France
    2. CNRS UMR 8199, Lille Pasteur Institute, 1 rue du Professeur Calmette, 59019, Lille Cedex, France
    3. Lille 2 University, Lille, France
    4. IRSA, La Riche, France
    5. Assistance Publique–H?pitaux de Paris, H?pital Bichat, Diabetology Endocrinology Nutrition, Paris Diderot University, Paris, France
    6. Inserm U872, Paris, France
    7. Inserm U1018, Centre for Research in Epidemiology and Population Health, Epidemiology of Diabetes, Obesity and Chronic Renal Disease Over the Lifecourse, Villejuif, France
    8. Paris-Sud 11 University, UMRS 1018, Villejuif, France
    9. Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, Room E303, Burlington-Danes building, Du Cane Road, London, W12 0NN, UK
  • ISSN:1432-0428
文摘
Aims/hypothesis Genome-wide association studies have firmly established 65 independent European-derived loci associated with type 2 diabetes and 36 loci contributing to variations in fasting plasma glucose (FPG). Using individual data from the Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) prospective study, we evaluated the contribution of three genetic risk scores (GRS) to variations in metabolic traits, and to the incidence and prevalence of impaired fasting glycaemia (IFG) and type 2 diabetes. Methods Three GRS (GRS-1, 65 type 2 diabetes-associated single nucleotide polymorphisms [SNPs]; GRS-2, GRS-1 combined with 24 FPG-raising SNPs; and GRS-3, FPG-raising SNPs alone) were analysed in 4,075 DESIR study participants. GRS-mediated effects on longitudinal variations in quantitative traits were assessed in 3,927 nondiabetic individuals using multivariate linear mixed models, and on the incidence and prevalence of hyperglycaemia at 9?years using Cox and logistic regression models. The contribution of each GRS to risk prediction was evaluated using the C-statistic and net reclassification improvement (NRI) analysis. Results The two most inclusive GRS were significantly associated with increased FPG (β--.0011?mmol/l per year per risk allele, p GRS-1 --.2?×-0? and p GRS-2 --.0?×-0?), increased incidence of IFG and type 2 diabetes (per allele: HR GRS-1 1.03, p--.3?×-0? and HR GRS-2 1.04, p--.0?×-0?6), and the 9?year prevalence (OR GRS-1 1.13 [95% CI 1.10, 1.17], p--.9?×-0?4 for type 2 diabetes only; OR GRS-2 1.07 [95% CI 1.05, 1.08], p--.8?×-0?5, for IFG and type 2 diabetes). No significant interaction was found between GRS-1 or GRS-2 and potential confounding factors. Each GRS yielded a modest, but significant, improvement in overall reclassification rates (NRI GRS-1 17.3%, p--.6?×-0?; NRI GRS-2 17.6%, p--.2?×-0?; NRI GRS-3 13.1%, p--.7?×-0?). Conclusions/interpretation Polygenic scores based on combined genetic information from type 2 diabetes risk and FPG variation contribute to discriminating middle-aged individuals at risk of developing type 2 diabetes in a general population.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700