Band Anticrossing in Dilute Germanium Carbides Using Hybrid Density Functionals
详细信息    查看全文
  • 作者:Chad A. Stephenson ; William A. O'brien ; Meng Qi…
  • 关键词:Germanium ; germanium carbon ; density functional theory ; hybrid functionals
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:45
  • 期:4
  • 页码:2121-2126
  • 全文大小:1,309 KB
  • 参考文献:1.J. Liu, X. Sun, R. Camacho-Aguilera, L.C. Kimerling, and J. Michel, Opt. Lett. 35, 679 (2010).CrossRef
    2.N. Pavarelli, T.J. Ochalski, F. Murphy-Armando, Y. Huo, M. Schmidt, G. Huyet, and J.S. Harris, Phys. Rev. Lett. 110, 177404 (2013).CrossRef
    3.M. de Kersauson, M. El Kurdi, S. David, X. Checoury, G. Fishman, S. Sauvage, R. Jakomin, G. Beaudoin, I. Sagnes, and P. Boucaud, Opt. Express 19, 17925 (2011).CrossRef
    4.D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K.C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, Appl. Phys. Lett. 100, 131112 (2012).CrossRef
    5.R.E. Camacho-Aguilera, Y. Cai, N. Patel, J.T. Bessette, M. Romagnoli, L.C. Kimerling, and J. Michel, Opt. Express 20, 11316 (2012).CrossRef
    6.M. Qi, W.A. O’Brien, C.A. Stephenson, N. Cao, B.J. Thibeault, and M.A. Wistey, 6th International Silicon-Germanium Technology Device Meeting (ISTDM 2012) (Berkeley, CA, 2012).
    7.H.H. Tseng, K.Y. Wu, H. Li, V. Mashanov, H.H. Cheng, G. Sun, and R.A. Soref, Appl. Phys. Lett. 102, 182106 (2013).CrossRef
    8.J.P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, Appl. Phys. Lett. 102, 251117 (2013).CrossRef
    9.S. Gupta, B. Magyari-Köpe, Y. Nishi, and K.C. Saraswat, J. Appl. Phys. 113, 053707 (2013).CrossRef
    10.R. Chen, H. Lin, Y. Huo, C. Hitzman, T.I. Kamins, and J.S. Harris, Appl. Phys. Lett. 99, 181125 (2011).CrossRef
    11.W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, and S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999).CrossRef
    12.S.R. Bank, H. Bae, L.L. Goddard, H.B. Yuen, M.A. Wistey, R. Kudrawiec, and J.S. Harris, IEEE J. Quantum Electron. 43, 773 (2007).CrossRef
    13.M. Okinaka, K. Miyatake, J. Ohta, and M. Nunoshita, J. Cryst. Growth 255, 273 (2003).CrossRef
    14.J. Kolodzey, P.R. Berger, B.A. Orner, D. Hits, F. Chen, A. Khan, X. Shao, M.M. Waite, S.I. Shah, C.P. Swann, and K.M. Unruh, J. Cryst. Growth 157, 386 (1995).CrossRef
    15.K.J. Roe, M.W. Dashiell, J. Kolodzey, P. Boucaud, and J.-M. Lourtioz, J. Vac. Sci. Technol., B 17, 1301 (1999).CrossRef
    16.D. Gall, J. D’Arcy-Gall, and J. Greene, Phys. Rev. B 62, R7723 (2000).CrossRef
    17.C. Guedj, J. Kolodzey, and A. Hairie, Phys. Rev. B 60, 150 (1999).CrossRef
    18.P. Kelires, Phys. Rev. B 60, 10837 (1999).CrossRef
    19.J. D’Arcy-Gall, D. Gall, I. Petrov, P. Desjardins, and J.E. Greene, J. Appl. Phys. 90, 3910 (2001).CrossRef
    20.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRef
    21.G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).CrossRef
    22.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRef
    23.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRef
    24.P. Blöchl, Phys. Rev. B 50, 17797 (1994).CrossRef
    25.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRef
    26.J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRef
    27.J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).CrossRef
    28.A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006).CrossRef
    29.G. Stenuit and S. Fahy, Phys. Rev. B 76, 035201 (2007).CrossRef
    30.M. Tomić, H. Jeschke, and R. Valentí, Phys. Rev. B 90, 195121 (2014).CrossRef
    31.L.E. Vorobyev, Handbook Series Semiconductor Parameters, vol. 1, ed. M. Levinshtein, S. Rumyandtsev, and M. Shur (Singapore: World Scientific Publishing Co Pte Ltd, 1996), p. 33.
    32.G.-E. Chang and H.H. Cheng, J. Phys. D 46, 065103 (2013).CrossRef
    33.M. Virgilio, C.L. Manganelli, G. Grosso, G. Pizzi, and G. Capellini, Phys. Rev. B 87, 235313 (2013).CrossRef
    34.P.R.C. Kent, L. Bellaiche, and A. Zunger, Semicond. Sci. Technol. 17, 851 (2002).CrossRef
  • 作者单位:Chad A. Stephenson (1)
    William A. O’brien (1)
    Meng Qi (1)
    Michael Penninger (2)
    William F. Schneider (2)
    Mark A. Wistey (1)

    1. Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
    2. Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
Dilute germanium carbides (Ge<sub>1−ss="EmphasisTypeItalic ">x sub>C<sub> x sub>) offer a direct bandgap for compact silicon photonics, but widely varying properties have been reported. This work reports improved band structure calculations for Ge<sub>1−ss="EmphasisTypeItalic ">x sub>C<sub> x sub> using ab initio simulations that employ the HSE06 exchange–correlation density functional. Contrary to Vegards law, the conduction band minimum at Γ is consistently found to decrease with increasing C content, while L and X valleys change much more slowly. The calculated Ge bandgap is within 11% of experimental values. A decrease in energy at the Γ conduction band valley of (170 meV ± 50)/%C is predicted, leading to a direct bandgap for x > 0.008. These results indicate a promising material for Group IV lasers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700