Effect of alloying elements on interdiffusion phenomena in explosive clads of 304LSS/Ti᾿Ta᾿Nb alloy
详细信息    查看全文
  • 作者:T. N. Prasanthi ; C. Sudha ; S. Saroja
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:51
  • 期:11
  • 页码:5290-5304
  • 全文大小:2,490 KB
  • 参考文献:1.Kamachi Mudali U, Ananda Rao BM, Shanmugam K, Natarajan R, Raj Baldev (2003) Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel. J Nucl Mater 321:40–48CrossRef
    2.Ghosh M, Chatterjee S (2003) Diffusion bonded transition joints of titanium to stainless steel with improved properties. Mater Sci Engg A 358:152–158CrossRef
    3.Sudha C, Prasanthi TN, Murugesan S, Saroja S, Kuppusami P, Vijayalaksmi M (2011) Study of interface and base metal microstructures in explosive clad joint of Ti–5Ta–1.8Nb and 304L stainless steel. Sci Technol Weld Join 16:133–139CrossRef
    4.Prasanthi TN, Sudha C, Parida PK, Das Gupta A, Saroja S (2015) Prediction and confirmation of phases formed in the diffusion zone of Ti–5Ta–2Nb/304L SS explosive clads. Metall Mater Trans A 46:1519–1534CrossRef
    5.Mitra S, Stark JP, Tatti SR (1991) On the use of the Boltzmann–Matano analysis to deduce concentration dependent diffusivity. J Phys Chem Solids 52:463–465CrossRef
    6.Laik A, Kale GB, Bhanumurthy K (2006) Interdiffusion studies between a Mo based alloy and Ti. Metall Mater Trans A 37:2919–2926CrossRef
    7.Kale GB, Patil RV, Gawade PS (1998) Interdiffusion studies in titanium-304 stainless steel system. J Nucl Mater 257:44–50CrossRef
    8.Sarah B, Katrina B, Kulkarni NS, Yomgho S (2012) Interdiffusion in the Mg–Al system and intrinsic diffusion in β-Mg2Al3. Metall Mater Trans A 43:4043–4052CrossRef
    9.Den Broeder FJA (1969) A general simplification and improvement of the Matano-Boltzmann method in the determination of the interdiffusion coefficients in the binary systems. Scripta Metall 3:321–325CrossRef
    10.Kailasam Sridhar K, Lacombe Jeffrey C, Glicksman Martin E (1999) Evaluation of the methods for calculating the concentration dependent diffusivity in binary systems. Metall Mater Trans A 30:2605–2610CrossRef
    11.Thibon I, Ansel D, Gloriant T (2009) Interdiffusion in β Ti–Zr binary alloys. J Alloys Compd 470:127–133CrossRef
    12.Ansel D, Thibon I, Boliveau M, Debuigne J (1998) Interdiffusion in the body cubic centered β Phase of Ta–Ti alloys. Acta Mater 46:423–430CrossRef
    13.Sangeeta S, Paul A (2015) Role of molar volume on estimated diffusion coefficients. Metall Mater Trans A 46:3887–3899CrossRef
    14.Wagner C (1969) The evaluation of data obtained with diffusion couples of binary single phase and multi phase systems. Acta Metall 17:99–107CrossRef
    15.Dayananda MA (1968) A practical coordinate for multicomponent diffusion. Scripta Metall. 2:117–120CrossRef
    16.Ghosh M, Chatterjee S, Mishra B (2003) The effect of intermetallics on the strength properties of diffusion bonds formed between Ti–5.5Al–2.4V and 304 stainless steel. Mater Sci Engg A 363:268–274CrossRef
    17.Ferrante M, Pigoretti EV (2002) Diffusion bonding of Ti–6Al–4V to AISI 316L stainless steel: mechanical resistance and interface microstructure. J Mater Sci 37:2825–2833. doi:10.​1023/​A:​1015845822629 CrossRef
    18.Taguchi O, Tiwari GP, Iijima Y (2003) Growth kinetics of & β-Ti solid solution in reaction diffusion. Mater Trans 44:83–88CrossRef
    19.Kundu S, Chatterjee S, Olson D, Mishra B (2007) Effects of intermetallic phases on the bond strength of diffusion bonded joints between titanium and 304 stainless steel using nickel interlayer. Metall Mater Trans A 38:2053–2060CrossRef
    20.Scott VD, Love G, Reed SJB (1995) Quantitative electron probe microanalysis, 2nd edn. Ellis Horwood Ltd, London
    21.Patil RV, Kale GB, Gawde PS (2001) Diffusion reactions in titanium/Inconel-600 system. J Nucl Mater 297:153–160CrossRef
    22.Hall LD (1953) An analytical method of calculating variable diffusion coefficients. J Chem Phys 21:87–89CrossRef
    23.Dayananda MA (2010) Selected analysis and observations in multicomponent diffusion. Defin Diffus Forum 297–301:1451–1460CrossRef
    24.Landolt-Börnstein (1990) Diffusion in solid metals and alloys. Springer, Berlin
    25.Sangeeta S, Paul A (2015) Estimation of intrinsic diffusion coefficients in a pseudo binary diffusion couple. Scripta Mater 103:18–21CrossRef
    26. http://​www.​webelements.​com/​periodicity/​molar_​volume/​span>
    27.Vach M, Svojtka M (2012) Evaluation of molar volume effect for calculation of diffusion in binary systems. Metall Mater Trans B 43:1446–1453CrossRef
    28.Keiser DD, Dayananda MA (1993) Interdiffusion between U–Zr fuel and selected Fe–Ni–Cr alloys. J Nucl Mater 200:229–243CrossRef
    29.Murray JL (1987) Phase diagrams of binary Ti alloys. ASM International, Metals Park, pp 99–111
    30.Raghavan V (1987) The Fe–Cr–Ti phase diagram, phase diagrams of ternary iron alloys, Part 1. ASM International, Metals Park
    31.Dieter GE (1988) Mechanical Metallurgy. McGraw Hill Book Co., New York, pp 531–532
    32.Prasanthi TN, Sudha C, Murugesan S, Thomas Paul V, Saroja S (2015) Reverse transformation of deformation induced phases and associated changes in the microstructure of explosively clad Ti-5Ta-2Nb and SS304L. Metall Mater Trans A 46:4429–4435CrossRef
    33.Liu Y, Zhang L, Du Y, Liang D (2009) Ferromagnetic ordering and mobility end-members for impurity diffusion in bcc Fe. Calphad 33:732–736CrossRef
    34.Nakajima H, Yusa K, Kondo Y (1996) Diffusion of iron in a diluted α-Ti-Fe alloy. Scripta Mater 34:249–253CrossRef
    35.Alemán B, Gutiérrez L, Urcola JJ (1997) The use of Kirkendall effect for calculating intrinsic diffusion coefficients in a 316L/Ti6242 diffusion bonded couple. Scripta Mater 36:509–515CrossRef
    36.Alemán B, Gutiérrez L, Urcola JJ (1993) Interface microstructure in diffusion bonding of titanium alloys to stainless and low alloy steels. Mater Sci Technol 9:633–641CrossRef
    37.Patil RV, Kale GB, Garg SP (1995) Chemical diffusion in Zr-Nb system. J Nucl Mater 223:169–173CrossRef
    38.Kundu S, Chatterjee S (2008) Diffusion bonding between commercially pure titanium and micro-duplex stainless steel. Mater Sci Engg A 480:316–322CrossRef
    39.Takahashi T, Minamino Y, Komatsu M (2008) Interdiffusion in β phase of the ternary Ti-Al-V system. Mater Trans 49:125–132CrossRef
    40.Pandelaers L, Blanpain B, Wollants P (2011) An optimized diffusion database for the disordered and ordered bcc phases in the binary Fe–Ti system. Calphad 35:518–522CrossRef
  • 作者单位:T. N. Prasanthi (1) (2)
    C. Sudha (1)
    S. Saroja (1) (2)

    1. Microscopy and Thermo-Physical Property Division, Physical Metallurgy Group, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, 603102, India
    2. Homi Bhabha National Institute (HBNI), Department of Atomic Energy (DAE), Mumbai, Maharashtra, 400094, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Dissimilar joints of 304L austenitic stainless steel (SS) and Ti–5Ta–2Nb alloy were fabricated using explosive cladding process with an aim to avoid the formation of brittle intermetallic phases at the interface. Subsequently, diffusion annealing heat treatments were carried out at temperatures in the range of 550–800 °C for various durations. In the present study, concentration and temperature dependence of the distinct diffusion zones, formed at the clad interface, due to interdiffusion of the alloying elements, have been established using Electron Probe Micro Analysis and imaging of the interface. Molar volume showed a close match with the ideal Vegards law at low temperatures while a non-linear negative deviation has been observed at high temperatures (800 °C) due to the formation of secondary phases such as FeTi, Fe<sub>2sub>Ti and βTi(Fe) phases. Interdiffusion parameters evaluated by Wagner’s method showed sluggish diffusion kinetics of Fe and Ti at concentration corresponding to a two phase mixture of FeTi and Fe<sub>2sub>Ti. Further, an attempt has been made to understand multicomponent diffusion using Dayananda’s approach and estimation of effective interdiffusion coefficients revealed ~22 µm shift of the interface from Matano plane at 800 °C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700