Monascus: a Reality on the Production and Application of Microbial Pigments
详细信息    查看全文
  • 作者:Francielo Vendruscolo ; Rose Marie Meinicke Bühler…
  • 关键词:Microbial pigments ; Biomolecules ; Solid state fermentation ; Submerged fermentation ; Monascus
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:178
  • 期:2
  • 页码:211-223
  • 全文大小:451 KB
  • 参考文献:1.Aberoumand, A. (2011). A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World Journal of Dairy & Food Sciences., 6(1), 71–78.
    2.Domínguez-Espinosa, R. M., & Webb, C. (2003). Submerged fermentation in wheat substrates for production of Monascus pigments. World Journal of Microbiology and Biotechnology., 19, 329–336.CrossRef
    3.Sabater-Vilar, M., Maas, R. F. M., & Fink-Gremmels, J. (1999). Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutation Research., 444, 7–16.CrossRef
    4.Pennacchi, M. G. C., Rodrígues-Fernández, D. E., Vendruscolo, F., Maranho, L. T., Marc, I., Cardoso, L. A. C. A comparison of cell disruption procedures for the recovery of intracellular carotenoids from Sporobolomyces ruberrimus H110. International Journal of Applied Biology and Pharmaceutical Technology. 6(1), 136–143.
    5.Dufossé, L. (2004). Pigments in Food, More than Colours…. Quimper: Université de Bretagne Occidentale Publ.
    6.Dufossé, L., Galaup, P., Yaron, A., Arad, ,. S. M., Blanc, P., Murthy, K. N. C., & Ravishankar, G. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science and Technology., 16(9), 389–406.CrossRef
    7.Dufossé, L. (2006). Production of food grade pigments. Food Technology and Biotechnology., 44(3), 313–321.
    8.Hajjaj, H., Blanc, P., Groussac, E., Uribelarrea, J. L., Goma, G., & Loubiere, P. (2000). Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation. Enzyme and Microbial Technology., 27, 619–625.CrossRef
    9.Mostafa, M. E., & Abbady, M. S. (2014). Secondary metabolites and bioactivity of the monascus pigments review article. Global Journal of Biotechnology and Biochemistry., 9(1), 1–13.
    10.Carvalho, J. C., Pandey, A., Babitha, S., & Soccol, C. R. (2003). Production of Monascus biopigments: an overview. Agro-Industry Hi-Tech., 14(6), 37–42.
    11.Carvalho, J. C., Oishi, B. O., Pandey, A., & Soccol, C. R. (2005). Biopigments from Monascus: strain selection, citrinin production and color stability. Brazilian Archives of Biology and Technology., 48(6), 885–889.CrossRef
    12.Tseng, Y., Yang, J., Chang, H., Lee, Y., & Mau, J. (2006). Antioxidant properties of methanolic extracts from monascal adlay. Food Chemistry., 97(3), 375–381.CrossRef
    13.Yang, J. H., Tseng, Y. H., Lee, Y. L., & Mau, J. L. (2006). Antioxidant properties of methanolic extracts from monascal rice. lwt., 39, 740–747.CrossRef
    14.Vendruscolo, F., Pitol, L. O., Carciofi, B. A. M., Moritz, D. E., Laurindo, J. B., & Schmidell, W. (2010). Construction and application a vane system in a rotational rheometer for determination of the rheological properties of Monascus ruber CCT 3802. Journal of Biorheology., 24, 29–35.CrossRef
    15.Mukherjee, G., & Singh, S. K. (2011). Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochemistry., 46, 188–192.CrossRef
    16.Huang, Z., Xu, Y., Zhang, H., Li, L., He, Q., & Li, Y. (2011). Simultaneous determination of two Monascus metabolites in red yeast rice by HPLC using fluorescence detection. Food Chemistry., 127, 1837–1841.CrossRef
    17.Hsu, W. H., & Pan, T. M. (2012). Monascus purpureus-fermented products and oral cancer: a review. Applied Microbiology and Biotechnology., 93, 1831–1842.CrossRef
    18.Meinicke, R. M., Vendruscolo, F., Moritz, D. E., Oliveira, D., Ninow, J. L. (2012). Potential use of glycerol as substrate for the production of red pigments by Monascus ruber in submerged fermentation. Biocatalysis and Agricultural Biotechnology. 1, p.238–242.
    19.Shi, Y. C., & Pan, T. M. (2012). Red mold, diabetes, and oxidative stress: a review. Applied Microbiology and Biotechnology., 94, 47–55.CrossRef
    20.Vendruscolo, F., Rossi, M. J., Schmidell, W., Ninow, J. L. (2012). Determination of oxygen solubility in liquid media. ISRN Chemical Engineering. v. 2012, Article ID 601458.
    21.Chen, W., He, Y., Zhou, Y., Shao, Y., Feng, Y., Li, M., & Chen, F. (2015). Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Comprehensive Reviews in Food Science and Food Safety., 14, 555–567.CrossRef
    22.Pitt, J. I., & Hocking, A. D. (2009). Fungi and food spoilage. 3ed (p. 535). London: Springer.CrossRef
    23.Shao, C., Lei, M. L., Mão, Z., Shou, Y., & Chen, F. (2014). Insights into Monascus biology at the genetic level. Applied Microbiology and Biotechnology., 98, 3911–3922.CrossRef
    24.Cheng, M. J., Wu, M. D., Chen, Y. L., Chen, I. S., Su, Y. S., & Yuan, G. F. (2013). Chemical constituents of red yeast rice fermented with the fungus Monascus pilosus. Chemistry of Natural Compounds., 49(2), 249–252.CrossRef
    25.Campoy, S., Rumbero, A., Martin, J. F., & Liras, P. (2006). Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Applied Microbiology and Biotechnology., 70, 488–496.CrossRef
    26.Hsu, Y. W., Hsu, L. C., Liang, Y. H., Kuo, Y. H., & Pan, T. M. (2011). New bioactive orange pigments with yellow fluorescence from Monascus-fermented dioscorea. Journal of Agricultural and Food Chemistry., 59, 4512–4518.CrossRef
    27.Vendruscolo, F., Tosin, I., Giachini, A. J., Schmidell, W., & Ninow, J. L. (2014). Antimicrobial activity of Monascus pigments produced in submerged fermentation. Journal of Food Processing and Preservation., 38(4), 1860–1865.CrossRef
    28.Bühler, R. M. M., Dutra, A. C., Vendruscolo, F., Moritz, D. E., & Ninow, J. L. (2013). Monascus pigment production in bioreactor using a co-product of biodiesel substrate. Food Science and Technology., 33, 9–13.
    29.Bühler, R. M. M., Müller, B. L., Moritz, D. E., Vendruscolo, F., Oliveira, D., & Ninow, J. L. (2015). Influence of light intensity on growth and pigment production by Monascus ruber in submerged fermentation. Applied Biochemistry and Biotechnology., 176, 1277–1289.CrossRef
    30.Lian, X., Liu, L., Dong, S., Wu, H., Zhao, J., & Han, Y. (2015). Two new monascus red pigments produced by Shandong Zhonghui Food Company in China. European Food Research Technology., 240(4), 719–724.CrossRef
    31.Hajjaj, H., Klaébe, A., Loret, M. O., Tzédakis, T., Goma, G., & Blanc, P. J. (1997). Production and identification of N-glucosylrubropunctamine and N-glucosylmonascorubramine from Monascus ruber and occurrence of electron donor-acceptor complexes in these red pigments. Applied and Environmental Microbiology., 63(7), 2671–2678.
    32.Jung, H., Kim, C., Kim, K., & Shin, C. S. (2003). Color characteristics of Monascus pigments derived by fermentation with various amino acids. Journal of Agricultural and Food Chemistry., 51(5), 1302–1306.CrossRef
    33.Hamano, P. S., Orozco, S. F. B., & Kilikian, B. V. (2005). Concentration determination of extracellular and intracellular red pigments produced by a Monascus sp. Brazilian Archives of Biology and Technology., 48, 43–49.CrossRef
    34.Tseng, Y. Y., Chen, M. T., & Lin, C. F. (2000). Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrate, polyphosphate and various sugars. Journal of Applied Microbiology., 88, 31–37.CrossRef
    35.Hamdi, M., Blanc, P. J., & Goma, G. (1996). Effect of aeration conditions on the production of red pigments by Monascus purpureus growth on prickly pear juice. Process Biochemistry., 31(6), 543–547.CrossRef
    36.Lin, T. F., & Demain, A. L. (1992). Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. Journal of Industrial Microbiology., 9, 173–179.CrossRef
    37.Carels, M., & Shepherd, D. (1975). Sexual reproductive cycle of Monascus in submerged shaken culture. Journal of Bacteriology., 122(1), 288–294.
    38.Suh, J. H., & Shin, C. S. (2000). Physiological analysis on novel coculture of Monascus sp. J101 with Saccharomyces cerevesiae. FEMS Microbiology Letters, 190, 241–245.CrossRef
    39.Lin, C. F., & Iizuka, H. (1982). Production of extracellular pigment by a mutant of Monascus kaoliang sp. nov. Applied and Environmental Microbiology, 43(3), 671–676.
    40.Krairak, S., Yamamura, K., Irie, R., Nakajima, M., Shimizu, H., Anage, P. C., Yongsmith, B., & Shioya, S. (2000). Maximizing yellow pigment production in fed-batch culture of Monascus sp. Journal of Bioscience and Bioengineering., 90(4), 363–367.CrossRef
    41.Lopes, F. C., Tichota, D. M., Pereira, J. Q., Segalin, J., Rios, A. O., & Brandelli, A. (2013). Pigment production by filamentous fungi on agro-industrial byproducts: as eco-friendly alternative. Applied Biochemistry and Biotechnology, 171, 616–625.CrossRef
    42.Lian, X., Wang, C., & Guo, K. (2007). Identification of new red pigments produced by Monascus ruber. Dyes and Pigments., 73, 121–125.CrossRef
    43.Lee, Y. K., Chen, D. C., Chauvatcharin, S., Seki, T., & Yoshida, T. (1995). Production of Monascus pigments by a solid-liquid state culture method. Journal of Fermentation and Bioengineering., 79(5), 516–518.CrossRef
    44.Pastrana, L., & Goma, G. (1995). Estimation of bioprocess variables from Monascus ruber cultures by means of stoichiometric models. Process Biochemistry., 30(7), 607–613.CrossRef
    45.Juzlová, P., Rezanka, T., Martínková, L., Lozinski, J., & Machek, F. (1994). Ethanol as substrate for pigment production by the fungus Monascus purpureus. Enzyme and Microbial Technology., 16, 996–101.CrossRef
    46.Juzlová, P., Rezanka, T., Martínková, L., & Kren, V. (1996). Long-chain fatty acids from Monascus purpureus. Phytochemistry, 43(1), 151–153.CrossRef
    47.Hajjaj, H., Blanc, P. J., Groussac, E., Goma, G., Uribelarrea, G., & Loubiere, P. (1999). Improvement of red pigment/citrinin production ratio as a function of environmental conditions by Monascus ruber. Biotechnology and Bioengineering., 64(4), 497–501.CrossRef
    48.Hajjaj, H., Laébé, A., Loret, M. O., Goma, G., Blanc, P. J., & François, J. (1999). Biosynthetic pathway of citrinin in the filamentous fungus Monascus rubber as revealed by 13C nuclear magnetic resonance. Applied and Environmental Microbiology., 65(1), 311–314.
    49.Wang, Y. Z., Ju, X. L., & Zhou, Y. G. (2005). The variability of citrinin production in Monascus type cultures. Food Microbiology., 22, 145–148.CrossRef
    50.Babitha, S., Soccol, C. R., & Pandey, A. (2007). Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology., 98, 1554–1560.CrossRef
    51.Dweck, A. C. (2002). Natural ingredients for colouring hair. International Journal of Cosmetic Science., 24(5), 287–302.CrossRef
    52.Jongrungruangchok, S., Kittakoop, P., Yongsmith, B., Bavovada, R., Tanasupawat, S., Lartpornmatulee, N., & Thebtaranonth, Y. (2004). Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry, 65, 2569–2575.CrossRef
    53.Jung, H., Kim, C., & Shin, C. S. (2005). Enhanced photostability of Monascus pigments derived with various amino acids via fermentation. Journal of Agricultural and Food Chemistry., 53, 7108–7114.CrossRef
    54.Babitha, S., Soccol, C. R., & Pandey, A. (2006). Jackfruit seed—a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technology and Biotechnology., 44(4), 465–471.
    55.Chen, M., & Johns, M. R. (1993). Effect of pH and nitrogen source on pigment production by Monascus purpureus. Applied Microbiology and Biotechnology., 40, 132–138.CrossRef
    56.Orozco, S. F. B., & Kilikian, B. V. (2008). Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World Journal Microbiology and Biotechnology., 24, 263–268.CrossRef
    57.Miyake, T., Mori, A., Okuno, A. K. T., Usui, Y., Sammoto, F. S. H., & Kariyama, A. W. M. (2005). Light effects on cell development and secondary metabolism in Monascus. Journal of Industrial Microbiology and Biotechnology, 32, 103–108.CrossRef
    58.Velmurugan, P., Lee, H. L., Venil, C. K., Lakshmanaperumalsamy, P., Chae, J. C., & Oh, B. T. (2010). Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. Journal of Bioscience and Bioengineering., 109(4), 346–350.CrossRef
    59.Ahn, J., Jung, J., Hyung, W., Haam, S., & Shin, C. (2006). Enhancement of Monascus pigment production by the culture of Monascus sp. J101 at low temperature. Biotechnology Progress, 22, 338–340.CrossRef
    60.Fang, H. H. P., Li, C., & Zhang, T. (2006). Acidophilic biohydrogen production from rice slurry. International Journal of Hydrogen Energy., 31, 683–692.CrossRef
    61.Vendruscolo, F., Ribeiro, C. S., Espósito, E., & Ninow, J. L. (2009). Biological treatment of apple pomace and addition in diet for fish. Revista Brasileira de Engenharia Agrícola e Ambiental., 13(4), 487–493.CrossRef
    62.Vendruscolo, F., & Ninow, J. L. (2014). Apple pomace as a substrate for fungal chitosan production in an airlift bioreactor. Biocatalysis and Agricultural Biotechnology., 4(4), 338–342.CrossRef
    63.Yang, S., Zhang, H., Li, Y., Qian, J., & Wang, W. (2005). The ultrasonic effect on biological characteristics of Monascus sp. Enzyme Microbiology and Technology., 37, 139–144.CrossRef
    64.Vendruscolo, F., Müller, B. L., Moritz, D. E., Oliveira, D., Schmidell, W., & Ninow, J. L. (2013). Thermal stability of natural pigments produced by Monascus ruber in submerged fermentation. Biocatalysis and Agricultural Biotechnology., 2(3), 278–284.CrossRef
    65.Hamano, P. S., & Kilikian, B. V. (2006). Production of red pigments by Monascus ruber in culture media containing corn steep liquor. Brazilian Journal of Chemical Enginnering, 23(4), 443–449.
    66.Wang, S., Yen, Y., Tsiao, W., Chang, W., & Wang, C. (2002). Production of antimicrobial compounds by Monascus purpureus CCRC31499 using shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology., 31, 337–344.CrossRef
    67.Kongruang, S. (2011). Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor. Journal of Industrial Microbiology and Biotechnology., 38, 93–99.CrossRef
    68.Silveira, S. T., Daroit, D. J., & Brandelli, A. (2008). Pigment production by Monascus purpureus in grape waste using factorial design. LWT-Food Science and Technology., 41, 170–174.CrossRef
    69.Hamdi, M., Blanc, P. J., Loret, M. O., & Goma, G. (1997). A new process for red pigment production by submerged culture of Monascus purpureus. Bioprocess Engineering., 17, 75–79.
    70.Mei, L. X., Hai, S. X., Lan, X., Wen, D. Z., & Ren, G. S. (2012). Validated RP-HPLC method for the determination of citrinin in xuezhikang capsule and other Monascus-fermented products. E-Journal of Chemistry., 9(1), 260–266.CrossRef
    71.Xu, G., Chen, Y., Yu, H., Cameleyre, X., & Blanc, P. J. (2003). HPLC fluorescence method for determination of citrinin in Monascus cultures. Archives Lebensmittelhyg., 54, 82–84.
    72.Wang, J. J., Lee, C. L., & Pan, T. M. (2004). Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. Journal of Agricultural and Food Chemistry, 52, 6977–6982.CrossRef
    73.Shimizu, T., Kinoshita, H., Ishihara, S., Sakai, K., Nagai, S., & Nihira, T. (2005). Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Applied Environmental Microbiology., 71(7), 3453–3457.CrossRef
    74.Jia, X. Q., Xu, Z. N., Zhou, L. P., & Sung, C. K. (2010). Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001. Metabolic Engineering., 12, 1–7.CrossRef
    75.Lima, A. S., Alegre, R. M., & Meirelles, A. J. A. (2002). Partitioning of pectinolytic enzymes in polyethylene glycol/potassium phosphate aqueous two-phase systems. Carbohydrate Polymers., 50, 63–68.CrossRef
    76.Pimentel, K. A., Araújo, A. I., Figueiredo, Z. M. B., Silva, R. A., Cavalcanti, M. T. H., Moreira, M. T. H., Filho, K. A., & Porto, A. L. F. (2013). Separation and Purification Technology., 110, 158–163.CrossRef
    77.Baranova, M., Mala, P., Burdová, O., Hadbavny, M., & Sabolová, G. (2004). Effect of natural pigment of Monascus purpureus on the organoleptic characters of processed cheese. Bulletin of the Veterinary Institute in Pullawy., 48, 59–62.
    78.Fabre, C. E., Goma, G., & Blanc, P. J. (1993). Production and food applications of the red pigments of Monascus ruber. Journal of Food Science., 58(5), 1099–1110.CrossRef
    79.Gaysinsky, S. & Weiss, J. (2007). Aromatic and spice plants: Uses in food safety. Stewart Postharvest Review. 3(4), article 5.
    80.Zink, D. L. (1997). The impact of consumer demands and trends on food processing. Emerging Infectious Diseases., 3(4), 467–469.CrossRef
    81.Naidu, A. S. (2000). Natural food antimicrobial systems. Boca Raton, London: CRC Press.CrossRef
    82.Martínková, L., Juzlová, P., & Vesely, D. (1995). Biological activity of polyketide pigments produced by the fungus Monascus. Journal of Applied Microbiology., 79(6), 609–616.
    83.Wong, H., & Koehler, P. E. (1981). Production and isolation of an antibiotic from Monascus purpureus and its relationship to pigment production. Journal of Food Science., 46, 589–592.CrossRef
    84.Xu, W. (2011). Study on the liquid fermentation to produce Monascus pigment with corn starch and antibacteria. Advanced Materials Research., 1336, 183–185.
    85.Kim, C., Jung, H., Kim, Y. O., & Shin, C. S. (2006). Antimicrobial activities of amino acid derivatives of Monascus pigments. FEMS Microbiology Letters., 264, 117–124.CrossRef
    86.Pyo, Y. H., & Lee, T. C. (2007). The potential antioxidant capacity and angiotensin I-converting enzyme inhibitory activity of Monascus-fermented soybean extracts: evaluation of Monascus-fermented soybean extracts as multifunctional food additives. Journal of Food Science., 72, 218–223.CrossRef
    87.Kuo, C.-F., Hou, M.-H., Wang, T.-S., Chyau, C.-C., & Chen, Y.-T. (2009). Enhanced antioxidant activity of Monascus pilosus fermented products by addition of ginger to the medium. Food Chemistry., 116, 915–922.CrossRef
    88.Choe, D., Lee, J., Woo, S., & Shin, C. S. (2012). Evaluation of the amine derivatives of Monascus pigment with anti-obesity activities. Food Chemistry., 134, 315–323.CrossRef
    89.Chiu, C. H., Ni, K. H., Guu, Y. K., & Pan, T. M. (2006). Production of red mold rice using a modified Nagata type koji maker. Applied Mirociology Biotechnology., 73(2), 297–304.CrossRef
    90.Seenivasan, A., Subhagar, S., Aravindan, R., & Viruthagiri, T. (2008). Microbial production and biomedical applications of lovastatin. Indian Journal of Pharmacology Science., 70, 701–709.CrossRef
  • 作者单位:Francielo Vendruscolo (1)
    Rose Marie Meinicke Bühler (2)
    Júlio Cesar de Carvalho (3)
    Débora de Oliveira (2)
    Denise Estevez Moritz (2)
    Willibaldo Schmidell (2)
    Jorge Luiz Ninow (2)

    1. College of Agronomy and Food Engineering, Federal University of Goiás, PO Box 131, Goiânia, GO, 74690-900, Brazil
    2. Chemical and Food Engineering Department, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC, 88040-900, Brazil
    3. Biotechnology and Bioprocess Engineering Department, Federal University of Paraná, PO Box 19060, Curitiba, PR, 81531-980, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
Monascus species can produce yellow, orange, and red pigments, depending on the employed cultivation conditions. They are classified as natural pigments and can be applied for coloration of meat, fishes, cheese, beer, and pates, besides their use in inks for printer and dyes for textile, cosmetic, and pharmaceutical industries. These natural pigments also present antimicrobial activity on pathogenic microorganisms and other beneficial effects to the health as antioxidant and anticholesterol activities. Depending on the substrates, the operational conditions (temperature, pH, dissolved oxygen), and fermentation mode (state solid fermentation or submerged fermentation), the production can be directed for one specific color dye. This review has a main objective to present an approach of Monascus pigments as a reality to obtaining and application of natural pigments by microorganisms, as to highlight properties that makes this pigment as promising for worldwide industrial applications. Keywords Microbial pigments Biomolecules Solid state fermentation Submerged fermentation Monascus

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700