Temperature-treated polyaniline layers as support for Pd catalysts: electrooxidation of glycerol in alkaline medium
详细信息    查看全文
  • 作者:Maria Ilieva ; Vessela Tsakova
  • 关键词:Polyaniline ; Palladium ; Titanium dioxide ; Glycerol
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:19
  • 期:9
  • 页码:2811-2818
  • 全文大小:607 KB
  • 参考文献:1.Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431-450CrossRef
    2.Lavacchi A, Miller H, Vizza F (2013) Nanotechnology in electrocatalysis for energy. Springer, New York, 331 p. ISBN 978-1-4899-8059-5CrossRef
    3.Braunchweig B, Hibbitts D, Neurock M, Wieckowski A (2013) Electrocatalysis: a direct alcohol fuel cell and surface science perspective. Catal Today 202:197-09CrossRef
    4.Quispe CAG, Coronado CJR, Carvalho JA Jr (2013) Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sust Energ Rev 27:475-93CrossRef
    5.Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183-206CrossRef
    6.Wang Z, Hu F, Shen PK (2006) Carbonized porous anodic alumina as electrocatalyst support for alcohol oxidation. Electrochem Commun 8:1764-768CrossRef
    7.Bambagioni V, Biamchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol=methanol, ethanol, glycerol). J Power Sources 190:241-51CrossRef
    8.Simoes M, Baranton S, Contanceau C (2010) Electrooxidation of glycerol at Pd-based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl Catal B Environ 93:354-62CrossRef
    9.Habibi E, Razmi H (2012) Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media. Int J Hydrogen Energy 37:16800-6809CrossRef
    10.Machado BF, Marchionni A, Bacsa RR, Bellini M, Beausoleil J, Oberhauser W, Vizza F, Serp P (2013) Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalyzing electrochemical oxidation of alcohols. J Energy Chem 22:296-04CrossRef
    11.Dector A, Cuevas-Mun FM, Guerra-Balcazar M, Godinez LA, Ledesma-Garc?a J, Arriaga LG (2013) Glycerol oxidation in a microfluidic fuel cell using Pd/C and Pd/MWCNT anodes electrodes. Int J Hydrogen Energy 38:12617-2622CrossRef
    12.Li SS, Hu YY, Feng JJ, Lv ZY, Chen JR, Wang AJ (2014) Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol. Int J Hydrogen Energy 39:3730-738CrossRef
    13.Rezaei B, Havakeshian E, Ensafi AA (2014) Fabrication of porous Pd film on nanoporous stainless steel using galvanic replacement as a novel electrocatalyst/electrode design for glycerol oxidation. Electrochim Acta 136:89-6CrossRef
    14.Maya-Cornejo J, Arjona N, Guerra-Balcázar M, álvarez-Contreras L, Ledesma-García J, Arriaga LG (2014) Synthesis of Pd-Cu bimetallic electrocatalyst for ethylene glycol and glycerol oxidations in alkaline media. Proc Chem 12:19-6CrossRef
    15.Fashedemi OO, Ozoemena KI (2014) Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalyst. Electrochim Acta 128:279-86CrossRef
    16.Sadiki TA, Vo P, Hu S, Copenhaver TS, Scudiero L, Ha S, Haan JL (2014) Increased electrochemical oxidation rate of alcohols in alkaline media on palladium surfaces electrochemically modified by antimony, lead, and tin. Electrochim Acta 13:302-07CrossRef
    17.Xu C, Tian Z, Shen P, Jiang SP (2008) Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrcatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta 53:2610-618CrossRef
    18.Hu F, Ding F, Song S, Shen P (2006) Pd electrocatalyst supported on carbonized TiO2 nanotubes for ethanol oxidation. J Power Sources 163:415-19CrossRef
    19.Su L, Jia W, Schempf A, Lei Y (2009) Palladium/titanium dioxide nanofibers for glycerol electrooxidation in alkaline medium. Electrochem Commun 11:2199-202CrossRef
    20.Xu W, Zhu S, Li Z, Cui Z, Yang X (2013) Synthesis and catalytic properties of Pd nanoparticles loaded nanoporous TiO2 material. Electrochim Acta 114:35-1CrossRef
    21.Estudillo-Wong LA, Vargas-Gomez AM, Arce-Estrada EM, Manzo-Robledo A (2013) TiO2/C composite as a support for Pd-nanoparticles toward the electrocatalytic oxidation of methanol in alkaline media. Electrochim Acta 112:164-70CrossRef
    22.Liang R, Hu A, Persic J, Zhou N (2013) Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano Micro Lett 5:202-12CrossRef
    23.Maheswari S, Sridhar P, Pitchumani S (2013) Pd-TiO2/C as a methanol tolerant catalysts for oxygen reduction reaction in alkaline medium. Electrochem Commun 26:97-00CrossRef
    24.Venancio EC, Napporn WT, Motheo AJ (2002) Electro-oxidation of glycerol on platinum dispersed in polyaniline matrices. Electrochim Acta 47:1495-501CrossRef
    25.Tsakova V (2008) How to affect number, size, and location of metal particles deposited in conducting
  • 作者单位:Maria Ilieva (1)
    Vessela Tsakova (1)

    1. Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
A new approach for obtaining highly dispersed Pd- and Pd/TiO2- electrocatalyst materials is proposed based on the use of polyaniline (PANI) as a sacrificial layer. PANI- or TiO2/PANI-coated electrodes are obtained by electrochemical polymerization of aniline in the absence or presence of TiO2 nanoparticles. Electroless palladium deposition at the expense of PANI oxidation is used to disperse the metal phase. Temperature treatment at 400 °C is further used to decompose the polymer backbone and obtain a highly dispersed catalysts deprived from the intrinsic electroactivity of PANI. The temperature-treated Pd/PANI and Pd/TiO2/PANI composites are studied as catalysts for the electrooxidation of glycerol in alkaline solutions. Keywords Polyaniline Palladium Titanium dioxide Glycerol

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700