Breed-specific transcriptome response of spleen from six to eight week old piglet after infection with Streptococcus suis type 2
详细信息    查看全文
  • 作者:U. Gaur (1) (2)
    YY. Xiong (3)
    QP. Luo (1) (2)
    FY. Yuan (1) (2)
    HY. Wu (1) (2)
    M. Qiao (1) (2)
    K. Wimmers (4)
    K. Li (5)
    SQ. Mei (1) (2)
    GS. Liu (1) (2)

    1. Institute of Animal Science and Veterinary Medicine
    ; Hubei Academy of Agricultural Sciences ; Yaoyuan No. 1 ; Nanhu ; Hongshan District ; Wuhan ; 430064 ; China
    2. Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding
    ; Yaoyuan No. 1 ; Nanhu ; Hongshan District ; Wuhan ; 430064 ; China
    3. State Key Laboratory for Biocontrol
    ; Sun Yat-Sen University ; Guangzhou ; 510275 ; China
    4. Research Unit 鈥楳olecular Biology鈥? Leibniz Institute for Farm Animals Biology (FBN)
    ; Wilhelm-Stahl-Allee 2 ; 18196 ; Dummerstorf ; Germany
    5. Beijing Institute of Animal Science and Veterinary Medicine
    ; Chinese Academy of Agricultural Sciences ; Malianwa ; Haidian District ; Beijing ; 100193 ; China
  • 关键词:Pigs ; Molecular immunology ; RNA ; seq ; Streptococcus suis type 2 ; Susceptibility
  • 刊名:Molecular Biology Reports
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:41
  • 期:12
  • 页码:7865-7873
  • 全文大小:269 KB
  • 参考文献:1. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20:50鈥?7 CrossRef
    2. Gottschalk M, Xu J, Calzas C, Segura M (2010) / Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol 5:371鈥?91 CrossRef
    3. Fittipaldi N, Segura M, Grenier D, Gottschalk M (2012) Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent / Streptococcus suis. Future Microbiol 7:259鈥?79 CrossRef
    4. Lian L, Qu LJ, Sun HY, Chen YM, Lamont SJ, Liu CJ, Yang N (2012) Gene expression analysis of host spleen responses to Marek鈥檚 disease virus infection at late tumor transformation phase. Poult Sci 91:2130鈥?138 CrossRef
    5. Shin GW, White SL, Dahms HU, Jeong HD, Kim JH (2013) Disease resistance and immune-relevant gene expression in golden mandarin fish, / Siniperca scherzeri Steindachner, infected with infectious spleen and kidney necrosis virus-like agent. J Fish Dis. doi:10.1111/jfd.12182
    6. Li R, Zhang AD, Chen B, Liu T, Wang Y, Chen H, Jin M (2010) Response of swine spleen to / Streptococcus suis infection revealed by transcription analysis. BMC Genom 11:556 CrossRef
    7. Rong J, Zhang W, Wang X, Fan H, Lu C, Yao H (2012) Identification of candidate susceptibility and resistance genes of mice infected with / Streptococcus suis type 2. PLoS One 7:e32150 CrossRef
    8. Yu Y, Luo J, Mitra A, Chang S, Tian F, Zhang H, Yuan P, Zhou H, Song J (2011) Temporal transcriptome changes induced by MDV in Marek鈥檚 disease-resistant and -susceptible inbred chickens. BMC Genom 12:501 CrossRef
    9. Smith J, Sadeyen JR, Paton IR, Hocking PM, Salmon N, Fife M, Nair V, Burt DW, Kaiser P (2011) Systems analysis of immune responses in Marek鈥檚 disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism. J Virol 85:11146鈥?1158 CrossRef
    10. Subramaniam S, Preeyanon L, Cheng HH (2013) Transcriptional profiling of Meq-dependent genes in Marek鈥檚 disease resistant and susceptible inbred chicken lines. PLoS One 8:e78171 CrossRef
    11. Perumbakkam S, Muir WM, Black-Pyrkosz A, Okimoto R, Cheng HH (2013) Comparison and contrast of genes and biological pathways responding to Marek鈥檚 disease virus infection using allele-specific expression and differential expression in broiler and layer chickens. BMC Genom 14:64 CrossRef
    12. Barreiro LB, Marioni JC, Blekhman R, Stephens M, Gilad Y (2010) Functional comparison of innate immune signalling pathways in primates. PLoS Genet 6:e1001249 CrossRef
    13. Lunney JK, Chen H (2010) Genetic control of host resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Virus Res 154:161鈥?69 CrossRef
    14. Lunney JK, Steibel JP, Reecy JM, Fritz E, Rothschild MF, Kerrigan M, Trible B, Rowland RRR (2011) Probing genetic control of swine responses to PRRSV infection: current progress of the PRRS host genetics consortium. BMC Proc 5:S30 CrossRef
    15. Reiner G, Willems H, Pesch S, Ohlinger VF (2010) Variation in resistance to the porcine reproductive and respiratory syndrome virus (PRRSV) in Pietrain and Miniature pigs. J Anim Breed Genet 127:100鈥?06 CrossRef
    16. Sousa KRS, Ribeiro AMF, Goes PRN, Guimar茫es SEF, Lopes PS, Veroneze R, Gasparino E (2011) Toll-Like Receptor 6 differential expression in two pig genetic groups vaccinated against / Mycoplasma hyopneumoniae. BMC Proc 5:S9 CrossRef
    17. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105鈥?111 CrossRef
    18. Trapnell C, Williams BA, Pertea G (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511鈥?15 CrossRef
    19. Mortazavi A, Williams BA, McCue K (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5:621鈥?28 CrossRef
    20. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 10:986鈥?95
    21. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136鈥?38 CrossRef
    22. Zhang Z (1986) Pig breeds in China. Shanghai Scientific and Technical Publishers, Shanghai
    23. Li M, Tian S, Jin L et al (2013) Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet 45:1431鈥?438 CrossRef
    24. Bierne H, Hamon M, Cossart P (2012) Epigenetics and Bacterial Infections. Cold Spring Harb Perspect Med 2:a010272 CrossRef
    25. G贸mez-D铆az E, Jord脿 M, Peinado MA, Rivero A (2012) Epigenetics of host鈥損athogen interactions: the road ahead and the road behind. PLoS Pathog 8:e1003007 CrossRef
    26. Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692鈥?03 CrossRef
    27. Bayarsaihan D (2011) Epigenetic mechanisms in inflammation. J Dent Res 90:9鈥?7 CrossRef
    28. Caldelari I, Chao Y, Romby P, Vogel J (2013) RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med 3(9):a010298 CrossRef
    29. Le Rhun A, Charpentier E (2012) Small RNAs in streptococci. RNA Biol 9:414鈥?26 CrossRef
    30. Chen H, Li C, Fang M, Zhu M, Li X, Zhou R, Li K, Zhao S (2009) Understanding / Haemophilus parasuis infection in porcine spleen through a transcriptomics approach. BMC Genom 10:64 CrossRef
    31. Huang Y, Huang X, Yan Y, Cai J, Ouyang Z, Cui H, Wang P, Qin Q (2011) Transcriptome analysis of orange-spotted grouper ( / Epinephelus coioides) spleen in response to Singapore grouper iridovirus. BMC Genom 12:556 CrossRef
    32. Jobin MC, Gottschalk M, Grenier D (2006) Upregulation of prostaglandin E2 and matrix metalloproteinase 9 production by human macrophage-like cells: synergistic effect of capsular material and cell wall from / Streptococcus suis. Microb Pathog 40:29鈥?4 CrossRef
    33. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617鈥?29 CrossRef
    34. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221鈥?33 CrossRef
    35. Sbardella D, Fasciglione GF, Gioia M, Ciaccio C, Tundo GR, Marini S, Coletta M (2012) Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 33:119鈥?08 CrossRef
    36. Greenlee KJ, Corry DB, Engler DA, Matsunami RK, Tessier P, Cook RG, Werb Z, Kheradmand F (2006) Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation. J Immunol 177:7312鈥?321 CrossRef
    37. Chen H, Lunney JK, Cheng L, Li X, Cao J, Zhu M, Zhao S (2011) Porcine S100A8 and S100A9: molecular characterizations and crucial functions in response to / Haemophilus parasuis infection. Dev Comp Immunol 35:490鈥?00 CrossRef
    38. Goyette J, Geczy CL (2010) Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids 41:821鈥?42 CrossRef
    39. Kadarmideen HN, Ali AA, Thomson PC, Muller B, Zinsstag J (2011) Polymorphisms of the SLC11A1 gene and resistance to bovine tuberculosis in African Zebu cattle. Anim Genet 42:656鈥?58 CrossRef
    40. Liu M, Fang L, Tan C, Long T, Chen H, Xiao S (2011) Understanding / Streptococcus suis serotype 2 infection in pigs through a transcriptional approach. BMC Genom 12:253 CrossRef
    41. Fabriek BO, Van Bruggen R, Deng DM, Ligtenberg AJ, Nazmi K, Schornagel K, Vloet RP, Dijkstra CD, van den Berg TK (2009) The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 113:887鈥?92 CrossRef
    42. Polfliet MM, Fabriek BO, Dani毛ls WP, Dijkstra CD, Van den Berg TK (2006) The rat macrophage scavenger receptor CD163: expression, regulation and role in inflammatory mediator production. Immunobiology 211:419鈥?25 CrossRef
    43. Dawson HD, Loveland JE, Pascal G et al (2013) Structural and functional annotation of the porcine immunome. BMC Genom 14:332 CrossRef
    44. Milan G, Granzotto M, Scarda A, Calcagno A, Pagano C, Federspil G, Vettor R (2002) Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss. Obes Res 10:1095鈥?103 CrossRef
    45. Silswal N, Singh AK, Aruna B, Mukhopadhyay S, Ghosh S, Ehtesham NZ (2005) Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem Biophys Res Commun 334:1092鈥?101 CrossRef
    46. Tang J, Wang C, Feng Y, Yang W et al (2006) Streptococcal toxic shock syndrome caused by / Streptococcus suis serotype 2. PLoS Med 3:e151 CrossRef
    47. Schwartz JC, Lefranc MP, Murtaugh MP (2012) Evolution of the porcine ( / Sus scrofa domestica) immunoglobulin kappa locus through germline gene conversion. Immunogenetics 64:303鈥?11 CrossRef
    48. Butler JE, Wertz N, Sun XZ (2013) Antibody repertoire development in fetal and neonatal piglets. XIV. Highly restricted IGKV gene usage parallels the pattern seen with IGLV and IGHV. Mol Immunol 55:329鈥?36 CrossRef
    49. Schwartz JC, Lefranc MP, Murtaugh MP (2012) Organization, complexity and allelic diversity of the porcine ( / Sus scrofa domestica) immunoglobulin lambda locus. Immunogenetics 64:399鈥?07 CrossRef
    50. Wertz N, Vazquez J, Wells K, Sun J, Butler JE (2013) Antibody repertoire development in fetal and neonatal piglets. XII. Three IGLV genes comprise 70聽% of the pre-immune repertoire and there is little junctional diversity. Mol Immunol 55:319鈥?28 CrossRef
    51. Sarson AJ, Parvizi P, Lepp D, Quinton M, Sharif S (2008) Transcriptional analysis of host responses to Marek鈥檚 disease virus infection in genetically resistant and susceptible chickens. Anim Genet 39:232鈥?40 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Animal Anatomy, Morphology and Histology
    Animal Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4978
文摘
Different pig breeds have shown differential susceptibility to the pathogen infection; however, molecular mechanisms of the infection susceptibility are not fully understood. Streptococcus suis type 2 (SS2) is an important zoonotic pathogen. To identify the genes responsible for infection susceptibility, pigs from two different breeds (Enshi black and Landrace) were inoculated with SS2 and their spleen transcriptome profiles were investigated in the present study. The differentially expressed genes (DEGs) were analyzed from infected versus control pigs in each breed, and then compared between both pig breeds. Enshi black pig showed more DEGs than Landrace (830 vs. 611) and most of these were due to down-regulated genes (543 vs. 387). However some DEGs were uniquely expressed in one breed, some were expressed in opposite direction in both breeds. A number of candidate genes and pathways are identified which might be involved in susceptibility to SS2, for example, MMP9 and Resistin were only significantly expressed in Landrace. NPG3 and PMAP23 were up-regulated in Landrace whereas down-regulated in Enshi black. LENG8 in control Landrace have inherently higher expression than control Enshi black. IGKV6 is down-regulated in Landrace but up-regulated in Enshi black. Overall, the transcriptome profiles are consistent with the clinical signs, i.e. the Enshi black is more susceptible to SS2 infection than Landrace. This is the first study to identify differential gene expression between indigenous and modern commercial pigs after in vivo SS2 infection using RNA-seq. The significant DEGs in splenic profiles between two pig breeds suggested considerable involvement of genetic background in susceptibility to the SS2 infection in pigs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700