Genome-wide sequencing of small RNAs reveals a tissue-specific loss of conserved microRNA families in Echinococcus granulosus
详细信息    查看全文
  • 作者:Yun Bai (22)
    Zhuangzhi Zhang (23)
    Lei Jin (22)
    Hui Kang (22)
    Yongqiang Zhu (22)
    Lu Zhang (22)
    Xia Li (22)
    Fengshou Ma (22)
    Li Zhao (23)
    Baoxin Shi (23)
    Jun Li (24)
    Donald P McManus (25)
    Wenbao Zhang (24)
    Shengyue Wang (22)

    22. Shanghai-MOST Key Laboratory of Health and Disease Genomics
    ; Chinese National Human Genome Center at Shanghai ; 250 Bibo Road ; Shanghai ; 201203 ; China
    23. Veterinary Research Institute
    ; Xinjiang Academy of Animal Sciences ; 151 East-Kelamayi Street ; Urumqi ; Xinjiang ; 830000 ; China
    24. State Key Laboratory Incubation Base of Xinjiang Major Diseases Research
    ; Clinical Medical Research Institute ; The First Affiliated Hospital of Xinjiang Medical University ; No. 1 Liyushan Road ; Urumqi ; Xinjiang ; 830054 ; China
    25. Molecular Parasitology Laboratory
    ; QIMR Berghofer Institute of Medical Research ; Brisbane ; QLD ; Australia
  • 关键词:Echinococcus granulosus ; microRNA ; Deep sequencing ; Differential expression ; Life cycle stage development
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,378 KB
  • 参考文献:1. Carrington, JC, Ambros, V (2003) Role of microRNAs in plant and animal development. Science 301: pp. 336-338 CrossRef
    2. Bartel, DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: pp. 281-297 CrossRef
    3. Ambros, V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113: pp. 673-676 CrossRef
    4. Kozomara, A, Griffiths-Jones, S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39: pp. D152-157 CrossRef
    5. Niwa, R, Slack, FJ (2007) The evolution of animal microRNA function. Curr Opin Genet Dev 17: pp. 145-150 CrossRef
    6. Heimberg, AM, Sempere, LF, Moy, VN, Donoghue, PC, Peterson, KJ (2008) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci U S A 105: pp. 2946-2950 CrossRef
    7. Christodoulou, F, Raible, F, Tomer, R, Simakov, O, Trachana, K, Klaus, S, Snyman, H, Hannon, GJ, Bork, P, Arendt, D (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463: pp. 1084-1088 CrossRef
    8. Tarver, JE, Sperling, EA, Nailor, A, Heimberg, AM, Robinson, JM, King, BL, Pisani, D, Donoghue, PC, Peterson, KJ (2013) miRNAs: small genes with big potential in metazoan phylogenetics. Mol Biol Evol 30: pp. 2369-2382 CrossRef
    9. Fromm, B, Worren, MM, Hahn, C, Hovig, E, Bachmann, L (2013) Substantial loss of conserved and gain of novel MicroRNA families in flatworms. Mol Biol Evol 30: pp. 2619-2628 CrossRef
    10. Eckert, J, Deplazes, P (2004) Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev 17: pp. 107-135 CrossRef
    11. Craig, PS, Larrieu, E (2006) Control of cystic echinococcosis/hydatidosis: 1863鈥?002. Adv Parasitol 61: pp. 443-508 CrossRef
    12. Craig, PS, McManus, DP, Lightowlers, MW, Chabalgoity, JA, Garcia, HH, Gavidia, CM, Gilman, RH, Gonzalez, AE, Lorca, M, Naquira, C, Nieto, A, Schantz, PM (2007) Prevention and control of cystic echinococcosis. Lancet Infect Dis 7: pp. 385-394 CrossRef
    13. Li, T, Ito, A, Pengcuo, R, Sako, Y, Chen, X, Qiu, D, Xiao, N, Craig, PS (2011) Post-treatment follow-up study of abdominal cystic echinococcosis in tibetan communities of northwest Sichuan Province. China PLoS Negl Trop Dis 5: pp. e1364 CrossRef
    14. Moro, PL, Gilman, RH, Verastegui, M, Bern, C, Silva, B, Bonilla, JJ (1999) Human hydatidosis in the central Andes of Peru: evolution of the disease over 3聽years. Clin Infect Dis 29: pp. 807-812 CrossRef
    15. McManus, DP, Zhang, W, Li, J, Bartley, PB (2003) Echinococcosis. Lancet 362: pp. 1295-1304 CrossRef
    16. Zheng, H, Zhang, W, Zhang, L, Zhang, Z, Li, J, Lu, G, Zhu, Y, Wang, Y, Huang, Y, Liu, J, Kang, H, Chen, J, Wang, L, Chen, A, Yu, S, Gao, Z, Jin, L, Gu, W, Wang, Z, Zhao, L, Shi, B, Wen, H, Lin, R, Jones, MK, Brejova, B, Vinar, T, Zhao, G, McManus, DP, Chen, Z, Zhou, Y (2013) The genome of the hydatid tapeworm Echinococcus granulosus. Nat Genet 45: pp. 1168-1175 CrossRef
    17. Cui, SJ, Xu, LL, Zhang, T, Xu, M, Yao, J, Fang, CY, Feng, Z, Yang, PY, Hu, W, Liu, F (2013) Proteomic characterization of larval and adult developmental stages in Echinococcus granulosus reveals novel insight into host-parasite interactions. J Proteomics 84: pp. 158-175 CrossRef
    18. Friedlander, MR, Adamidi, C, Han, T, Lebedeva, S, Isenbarger, TA, Hirst, M, Marra, M, Nusbaum, C, Lee, WL, Jenkin, JC, S谩nchez Alvarado, A, Kim, JK, Rajewsky, N (2009) High-resolution profiling and discovery of planarian small RNAs. Proc Natl Acad Sci U S A 106: pp. 11546-11551 CrossRef
    19. Palakodeti, D, Smielewska, M, Graveley, BR (2006) MicroRNAs from the Planarian Schmidtea mediterranea: a model system for stem cell biology. RNA 12: pp. 1640-1649 CrossRef
    20. Hao, L, Cai, P, Jiang, N, Wang, H, Chen, Q (2010) Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum. BMC Genomics 11: pp. 55 CrossRef
    21. Xue, X, Sun, J, Zhang, Q, Wang, Z, Huang, Y, Pan, W (2008) Identification and characterization of novel microRNAs from Schistosoma japonicum. PLoS One 3: pp. e4034 CrossRef
    22. Huang, J, Hao, P, Chen, H, Hu, W, Yan, Q, Liu, F, Han, ZG (2009) Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. PLoS One 4: pp. e8206 CrossRef
    23. de Souza, GM, Muniyappa, MK, Carvalho, SG, Guerra-Sa, R, Spillane, C (2011) Genome-wide identification of novel microRNAs and their target genes in the human parasite Schistosoma mansoni. Genomics 98: pp. 96-111 CrossRef
    24. Simoes, MC, Lee, J, Djikeng, A, Cerqueira, GC, Zerlotini, A, da Silva-Pereira, RA, Dalby, AR, LoVerde, P, El-Sayed, NM, Oliveira, G (2011) Identification of Schistosoma mansoni microRNAs. BMC Genomics 12: pp. 47 CrossRef
    25. Cucher, M, Prada, L, Mourglia-Ettlin, G, Dematteis, S, Camicia, F, Asurmendi, S, Rosenzvit, M (2011) Identification of Echinococcus granulosus microRNAs and their expression in different life cycle stages and parasite genotypes. Int J Parasitol 41: pp. 439-448 CrossRef
    26. Henderson, IR, Zhang, X, Lu, C, Johnson, L, Meyers, BC, Green, PJ, Jacobsen, SE (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38: pp. 721-725 CrossRef
    27. Friedlander, MR, Mackowiak, SD, Li, N, Chen, W, Rajewsky, N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40: pp. 37-52 CrossRef
    28. Chen, C, Ridzon, DA, Broomer, AJ, Zhou, Z, Lee, DH, Nguyen, JT, Barbisin, M, Xu, NL, Mahuvakar, VR, Andersen, MR, Lao, KQ, Livak, KJ, Guegler, KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33: pp. e179 CrossRef
    29. Lagos-Quintana, M, Rauhut, R, Lendeckel, W, Tuschl, T (2001) Identification of novel genes coding for small expressed RNAs. Science 294: pp. 853-858 CrossRef
    30. Lewis, BP, Burge, CB, Bartel, DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: pp. 15-20 CrossRef
    31. Lewis, BP, Shih, IH, Jones-Rhoades, MW, Bartel, DP, Burge, CB (2003) Prediction of mammalian microRNA targets. Cell 115: pp. 787-798 CrossRef
    32. Meyers, BC, Tej, SS, Vu, TH, Haudenschild, CD, Agrawal, V, Edberg, SB, Ghazal, H, Decola, S (2004) The use of MPSS for whole-genome transcriptional analysis in Arabidopsis. Genome Res 14: pp. 1641-1653 CrossRef
    33. Brenner, S, Johnson, M, Bridgham, J, Golda, G, Lloyd, DH, Johnson, D, Luo, S, McCurdy, S, Foy, M, Ewan, M, Roth, R, George, D, Eletr, S, Albrecht, G, Vermaas, E, Williams, SR, Moon, K, Burcham, T, Pallas, M, DuBridge, RB, Kirchner, J, Fearon, K, Mao, J, Corcoran, K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18: pp. 630-634 CrossRef
    34. Wang, Z, Xue, X, Sun, J, Luo, R, Xu, X, Jiang, Y, Zhang, Q, Pan, W (2010) An 鈥渋n-depth鈥?description of the small non-coding RNA population of Schistosoma japonicum schistosomulum. PLoS Negl Trop Dis 4: pp. e596 CrossRef
    35. Kato, M, de Lencastre, A, Pincus, Z, Slack, F (2009) Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 10: pp. R54 CrossRef
    36. Enright, AJ, John, B, Gaul, U, Tuschl, T, Sander, C, Marks, DS (2003) MicroRNA targets in Drosophila. Genome Biol 5: pp. R1 CrossRef
    37. Sperling, EA, Peterson, KJ microRNAs and metazoan phylogeny: big trees from little genes. In: Telford, MJ, Littlewood, DTJ eds. (2009) Animal evolution-genomes, trees and fossils. Oxford University Press, Oxford, pp. 157-170
    38. Erwin, DH, Laflamme, M, Tweedt, SM, Sperling, EA, Pisani, D, Peterson, KJ (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334: pp. 1091-1097 CrossRef
    39. Aboobaker, AA, Tomancak, P, Patel, N, Rubin, GM, Lai, EC (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci U S A 102: pp. 18017-18022 23102" target="_blank" title="It opens in new window">CrossRef
    40. Shalom-Feuerstein, R, Serror, L, De La Forest, DS, Petit, I, Aberdam, E, Camargo, L, Damour, O, Vigouroux, C, Solomon, A, Gaggioli, C, Itskovitz-Eldor, J, Ahmad, S, Aberdam, D (2012) Pluripotent stem cell model reveals essential roles for miR-450b-5p and miR-184 in embryonic corneal lineage specification. Stem Cells 30: pp. 898-909 CrossRef
    41. Nairz, K, Rottig, C, Rintelen, F, Zdobnov, E, Moser, M, Hafen, E (2006) Overgrowth caused by misexpression of a microRNA with dispensable wild-type function. Dev Biol 291: pp. 314-324 CrossRef
    42. Wheeler, BM, Heimberg, AM, Moy, VN, Sperling, EA, Holstein, TW, Heber, S, Peterson, KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11: pp. 50-68 CrossRef
    43. Rigano, R, Buttari, B, Profumo, E, Ortona, E, Delunardo, F, Margutti, P, Mattei, V, Teggi, A, Sorice, M, Siracusano, A (2007) Echinococcus granulosus antigen B impairs human dendritic cell differentiation and polarizes immature dendritic cell maturation towards a Th2 cell response. Infect Immun 75: pp. 1667-1678 CrossRef
    44. Cheng, G, Luo, R, Hu, C, Cao, J, Jin, Y (2013) Deep sequencing-based identification of pathogen-specific microRNAs in the plasma of rabbits infected with Schistosoma japonicum. Parasitology 140: pp. 1751-1761 CrossRef
    45. Bernal, D, Trelis, M, Montaner, S, Cantalapiedra, F, Galiano, A, Hackenberg, M, Marcilla, A (2014) Surface analysis of Dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs. J Proteomics 105: pp. 232-241 CrossRef
    46. Holcman, B, Heath, DD (1997) The early stages of Echinococcus granulosus development. Acta Trop 64: pp. 5-17 CrossRef
    47. Giraldez, AJ, Cinalli, RM, Glasner, ME, Enright, AJ, Thomson, JM, Baskerville, S, Hammond, SM, Bartel, DP, Schier, AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308: pp. 833-838 CrossRef
    48. Giraldez, AJ, Mishima, Y, Rihel, J, Grocock, RJ, Van Dongen, S, Inoue, K, Enright, AJ, Schier, AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312: pp. 75-79 CrossRef
    49. Hunter, SE, Finnegan, EF, Zisoulis, DG, Lovci, MT, Melnik-Martinez, KV, Yeo, GW, Pasquinelli, AE (2013) Functional genomic analysis of the let-7 regulatory network in Caenorhabditis elegans. PLoS Genet 9: pp. e1003353 CrossRef
    50. Smyth, JD (1990) In Vitro Cultivation Of Parasitic Helminths. CRC Press, Boca Raton
    51. Bethke, A, Fielenbach, N, Wang, Z, Mangelsdorf, DJ, Antebi, A (2009) Nuclear hormone receptor regulation of microRNAs controls developmental progression. Science 324: pp. 95-98 CrossRef
    52. Hammell, CM, Karp, X, Ambros, V (2009) A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc Natl Acad Sci U S A 106: pp. 18668-18673 CrossRef
    53. Li, J, Zhang, CS, Lu, GD, Wang, JH, Wen, H, Yan, GQ, Wei, XF, Lin, RY (2011) Molecular characterization of a signal-regulated kinase homolog from Echinococcus granulosus. Chin Med J (Engl) 124: pp. 2838-2844
    54. Zhang, W, Li, J, Jones, MK, Zhang, Z, Zhao, L, Blair, D, McManus, DP (2010) The Echinococcus granulosus antigen B gene family comprises at least 10 unique genes in five subclasses which are differentially expressed. PLoS Negl Trop Dis 4: pp. e784 CrossRef
    55. Zhang, W, Zhang, Z, Shi, B, Li, J, You, H, Tulson, G, Dang, X, Song, Y, Yimiti, T, Wang, J, Jones, MK, McManus, DP (2006) Vaccination of dogs against Echinococcus granulosus, the cause of cystic hydatid disease in humans. J Infect Dis 194: pp. 966-974 CrossRef
    56. Wang, WC, Lin, FM, Chang, WC, Lin, KY, Huang, HD, Lin, NS (2009) miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics 10: pp. 328 CrossRef
    57. Langmead, B, Trapnell, C, Pop, M, Salzberg, SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: pp. R25 CrossRef
    58. Friedlander, MR, Chen, W, Adamidi, C, Maaskola, J, Einspanier, R, Knespel, S, Rajewsky, N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26: pp. 407-415 CrossRef
    59. Gruber, AR, Lorenz, R, Bernhart, SH, Neubock, R, Hofacker, IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36: pp. W70-74 CrossRef
    60. Ambros, V, Bartel, B, Bartel, DP, Burge, CB, Carrington, JC, Chen, X, Dreyfuss, G, Eddy, SR, Griffiths-Jones, S, Marshall, M, Matzke, M, Ruvkun, G, Tuschl, T (2003) A uniform system for microRNA annotation. RNA 9: pp. 277-279 CrossRef
    61. Wang, L, Feng, Z, Wang, X, Zhang, X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26: pp. 136-138 CrossRef
    62. Grant, GR, Liu, J, Stoeckert, CJ (2005) A practical false discovery rate approach to identifying patterns of differential expression in microarray data. Bioinformatics 21: pp. 2684-2690 CrossRef
    63. Conesa, A, Gotz, S, Garcia-Gomez, JM, Terol, J, Talon, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: pp. 3674-3676 CrossRef
    64. Hosack, DA, Dennis, G, Sherman, BT, Lane, HC, Lempicki, RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4: pp. R70 CrossRef
    65. Moriya, Y, Itoh, M, Okuda, S, Yoshizawa, AC, Kanehisa, M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35: pp. W182-185 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background MicroRNAs (miRNAs) are important post-transcriptional regulators which control growth and development in eukaryotes. The cestode Echinococcus granulosus has a complex life-cycle involving different development stages but the mechanisms underpinning this development, including the involvement of miRNAs, remain unknown. Results Using Illumina next generation sequencing technology, we sequenced at the genome-wide level three small RNA populations from the adult, protoscolex and cyst membrane of E. granulosus. A total of 94 pre-miRNA candidates (coding 91 mature miRNAs and 39 miRNA stars) were in silico predicted. Through comparison of expression profiles, we found 42 mature miRNAs and 23 miRNA stars expressed with different patterns in the three life stages examined. Furthermore, considering both the previously reported and newly predicted miRNAs, 25 conserved miRNAs families were identified in the E. granulosus genome. Comparing the presence or absence of these miRNA families with the free-living Schmidtea mediterranea, we found 13 conserved miRNAs are lost in E. granulosus, most of which are tissue-specific and involved in the development of ciliated cells, the gut and sensory organs. Finally, GO enrichment analysis of the differentially expressed miRNAs and their potential targets indicated that they may be involved in bi-directional development, nutrient metabolism and nervous system development in E. granulosus. Conclusions This study has, for the first time, provided a comprehensive description of the different expression patterns of miRNAs in three distinct life cycle stages of E. granulosus. The analysis supports earlier suggestions that the loss of miRNAs in the Platyhelminths might be related to morphological simplification. These results may help in the exploration of the mechanism of interaction between this parasitic worm and its definitive and intermediate hosts, providing information that can be used to develop new interventions and therapeutics for the control of cystic echinococcosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700