Identification of a gene signature of a pre-transformation process by senescence evasion in normal human epidermal keratinocytes
详细信息    查看全文
  • 作者:Nathalie Martin (1) (2) (3) (4)
    Clara Salazar-Cardozo (1) (2) (3) (4)
    Chantal Vercamer (1) (2) (3) (4)
    Louise Ott (3) (8)
    Guillemette Marot (5) (6)
    Predrag Slijepcevic (7)
    Corinne Abbadie (1) (2) (3) (4)
    Olivier Pluquet (1) (2) (3) (4)

    1. CNRS
    ; UMR8161 ; Institut de Biologie de Lille ; 1 rue Calmette ; 59000 ; Lille ; France
    2. Universit茅 Lille 1 Sciences et Techniques
    ; 59650 ; Villeneuve d鈥橝scq ; France
    3. Universit茅 Lille 2 Droit et Sant茅
    ; 59000 ; Lille ; France
    4. Institut Pasteur de Lille
    ; 59000 ; Lille ; France
    8. INSERM UMR_S 1109
    ; Centre de Recherche d鈥橧mmunologie et d鈥橦茅matologie ; F茅d茅ration de M茅decine Translationnelle de Strasbourg (FMTS) ; Universit茅 de Strasbourg ; Strasbourg Cedex ; France
    5. Inria Lille-Nord Europe MODAL
    ; 40 avenue Halley ; 59650 ; Villeneuve d鈥橝scq ; France
    6. EA2694 Universit茅 Lille 2 Droit et Sant茅
    ; 59000 ; Lille ; France
    7. Brunel Institute of Cancer Genetics and Pharmacogenomics
    ; Brunel University ; Uxbridge ; UK
  • 关键词:Senescence ; Neoplastic transformation ; Xenobiotics ; AKR1Cs ; Keratinocytes ; Gene expression profile
  • 刊名:Molecular Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:1,367 KB
  • 参考文献:1. Hahn, WC, Weinberg, RA (2002) Modelling the molecular circuitry of cancer. Nat Rev Cancer 2: pp. 331-341 CrossRef
    2. Kinzler, KW, Vogelstein, B (1996) Lessons from hereditary colorectal cancer. Cell 87: pp. 159-170 CrossRef
    3. Abdel-Rahman, WM, Katsura, K, Rens, W, Gorman, PA, Sheer, D, Bicknell, D, Bodmer, WF, Arends, MJ, Wyllie, AH, Edwards, PA (2001) Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc Natl Acad Sci U S A 98: pp. 2538-2543 CrossRef
    4. Baylin, SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2: pp. S4-S11 CrossRef
    5. Futscher, BW (2013) Epigenetic changes during cell transformation. Adv Exp Med Biol 754: pp. 179-194 CrossRef
    6. Hanahan, D, Weinberg, RA (2000) The hallmarks of cancer. Cell 100: pp. 57-70 CrossRef
    7. Hirsch, HA, Iliopoulos, D, Joshi, A, Zhang, Y, Jaeger, SA, Bulyk, M, Tsichlis, PN, Shirley Liu, X, Struhl, K (2010) A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 17: pp. 348-361 CrossRef
    8. Moon, A, Yong, H-Y, Song, J-I, Cukovic, D, Salagrama, S, Kaplan, D, Putt, D, Kim, H, Dombkowski, A, Kim, H-RC (2008) Global gene expression profiling unveils S100A8/A9 as candidate markers in H-ras-mediated human breast epithelial cell invasion. Mol Cancer Res 6: pp. 1544-1553 CrossRef
    9. Campisi, J (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11: pp. S27-S31 CrossRef
    10. Copp茅, J-P, Desprez, P-Y, Krtolica, A, Campisi, J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5: pp. 99-118 CrossRef
    11. Romanov, SR, Kozakiewicz, BK, Holst, CR, Stampfer, MR, Haupt, LM, Tlsty, TD (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409: pp. 633-637 CrossRef
    12. Gosselin, K, Martien, S, Pourtier, A, Vercamer, C, Ostoich, P, Morat, L, Sabatier, L, Duprez, L, T鈥檏int De Roodenbeke, C, Gilson, E, Malaquin, N, Wernert, N, Slijepcevic, P, Ashtari, M, Chelli, F, Deruy, E, Vandenbunder, B, De Launoit, Y, Abbadie, C (2009) Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res 69: pp. 7917-7925 CrossRef
    13. Malaquin, N, Vercamer, C, Bouali, F, Martien, S, Deruy, E, Wernert, N, Chwastyniak, M, Pinet, F, Abbadie, C, Pourtier, A (2013) Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One 8: pp. e63607 CrossRef
    14. Van Ruissen, F, Jansen, BJH, de Jongh, GJ, van Vlijmen-Willems, IMJJ, Schalkwijk, J (2002) Differential gene expression in premalignant human epidermis revealed by cluster analysis of serial analysis of gene expression (SAGE) libraries. FASEB J 16: pp. 246-248
    15. Ra, SH, Li, X, Binder, S (2011) Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin. Mod Pathol 24: pp. 963-973
    16. Dodmane, PR, Arnold, LL, Kakiuchi-Kiyota, S, Qiu, F, Liu, X, Rennard, SI, Cohen, SM (2013) Cytotoxicity and gene expression changes induced by inorganic and organic trivalent arsenicals in human cells. Toxicology 312C: pp. 18-29 CrossRef
    17. Nindl, I, Dang, C, Forschner, T, Kuban, RJ, Meyer, T, Sterry, W, Stockfleth, E (2006) Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling. Mol Cancer 5: pp. 30 CrossRef
    18. Padilla, RS, Sebastian, S, Jiang, Z, Nindl, I, Larson, R (2010) Gene expression patterns of normal human skin, actinic keratosis, and squamous cell carcinoma: a spectrum of disease progression. Arch Dermatol 146: pp. 288-293 CrossRef
    19. Torres, A, Storey, L, Anders, M, Miller, RL, Bulbulian, BJ, Jin, J, Raghavan, S, Lee, J, Slade, HB, Birmachu, W (2007) Microarray analysis of aberrant gene expression in actinic keratosis: effect of the Toll-like receptor-7 agonist imiquimod. Br J Dermatol 157: pp. 1132-1147 CrossRef
    20. Ogata, H, Goto, S, Fujibuchi, W, Kanehisa, M (1998) Computation with the KEGG pathway database. Biosystems 47: pp. 119-128 CrossRef
    21. Bauman, DR, Rudnick, SI, Szewczuk, LM, Jin, Y, Gopishetty, S, Penning, TM (2005) Development of nonsteroidal anti-inflammatory drug analogs and steroid carboxylates selective for human aldo-keto reductase isoforms: potential antineoplastic agents that work independently of cyclooxygenase isozymes. Mol Pharmacol 67: pp. 60-68 CrossRef
    22. Adeniji, AO, Twenter, BM, Byrns, MC, Jin, Y, Chen, M, Winkler, JD, Penning, TM (2012) Development of potent and selective inhibitors of aldo-keto reductase 1C3 (type 5 17尾-hydroxysteroid dehydrogenase) based on N-phenyl-aminobenzoates and their structure-activity relationships. J Med Chem 55: pp. 2311-2323 CrossRef
    23. Mantel, A, Carpenter-Mendini, AB, Vanbuskirk, JB, De Benedetto, A, Beck, LA, Pentland, AP (2012) Aldo-keto reductase 1C3 is expressed in differentiated human epidermis, affects keratinocyte differentiation, and is upregulated in atopic dermatitis. J Invest Dermatol 132: pp. 1103-1110 CrossRef
    24. Luu-The, V, Ferraris, C, Duche, D, B茅langer, P, Leclaire, J, Labrie, F (2007) Steroid metabolism and profile of steroidogenic gene expression in Episkin: high similarity with human epidermis. J Steroid Biochem Mol Biol 107: pp. 30-36 CrossRef
    25. Du, L, Neis, MM, Ladd, PA, Lanza, DL, Yost, GS, Keeney, DS (2006) Effects of the differentiated keratinocyte phenotype on expression levels of CYP1-4 family genes in human skin cells. Toxicol Appl Pharmacol 213: pp. 135-144 CrossRef
    26. Penning, TM, Byrns, MC (2009) Steroid hormone transforming aldo-keto reductases and cancer. Ann N Y Acad Sci 1155: pp. 33-42 CrossRef
    27. Jin, Y, Penning, TM (2007) Aldo-keto reductases and bioactivation/detoxication. Annu Rev Pharmacol Toxicol 47: pp. 263-292 CrossRef
    28. Palackal, NT, Lee, SH, Harvey, RG, Blair, IA, Penning, TM (2002) Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells. J Biol Chem 277: pp. 24799-24808 CrossRef
    29. Boyce, ST, Ham, RG (1983) Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol 81: pp. 33s-40s CrossRef
    30. Petalidis, L, Bhattacharyya, S, Morris, GA, Collins, VP, Freeman, TC, Lyons, PA (2003) Global amplification of mRNA by template-switching PCR: linearity and application to microarray analysis. Nucleic Acids Res 31: pp. e142 CrossRef
    31. Yang, YH, Dudoit, S, Luu, P, Lin, DM, Peng, V, Ngai, J, Speed, TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30: pp. e15 CrossRef
    32. Smyth, GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: pp. Article3
    33. Benjamini, Y, Drai, D, Elmer, G, Kafkafi, N, Golani, I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: pp. 279-284 CrossRef
    34. McCarthy, DJ, Smyth, GK (2009) Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 25: pp. 765-771 CrossRef
    35. Guerardel, C, Deltour, S, Pinte, S, Monte, D, Begue, A, Godwin, AK, Leprince, D (2001) Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53. J Biol Chem 276: pp. 3078-3089 CrossRef
    36. Halim, M, Yee, DJ, Sames, D (2008) Imaging induction of cytoprotective enzymes in intact human cells: coumberone, a metabolic reporter for human AKR1C enzymes reveals activation by panaxytriol, an active component of red ginseng. J Am Chem Soc 130: pp. 14123-14128 CrossRef
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1476-4598
文摘
Background Epidemiological data show that the incidence of carcinomas in humans is highly dependent on age. However, the initial steps of the age-related molecular oncogenic processes by which the switch towards the neoplastic state occurs remain poorly understood, mostly due to the absence of powerful models. In a previous study, we showed that normal human epidermal keratinocytes (NHEKs) spontaneously and systematically escape from senescence to give rise to pre-neoplastic emerging cells. Methods Here, this model was used to analyze the gene expression profile associated with the early steps of age-related cell transformation. We compared the gene expression profiles of growing or senescent NHEKs to post-senescent emerging cells. Data analyses were performed by using the linear modeling features of the limma package, resulting in a two-sided t test or F-test based on moderated statistics. The p-values were adjusted for multiple testing by controlling the false discovery rate according to Benjamini Hochberg method. The common gene set resulting of differential gene expression profiles from these two comparisons revealed a post-senescence neoplastic emergence (PSNE) gene signature of 286 genes. Results About half of these genes were already reported as involved in cancer or premalignant skin diseases. However, bioinformatics analyses did not highlight inside this signature canonical cancer pathways but metabolic pathways, including in first line the metabolism of xenobiotics by cytochrome P450. In order to validate the relevance of this signature as a signature of pretransformation by senescence evasion, we invalidated two components of the metabolism of xenobiotics by cytochrome P450, AKR1C2 and AKR1C3. When performed at the beginning of the senescence plateau, this invalidation did not alter the senescent state itself but significantly decreased the frequency of PSNE. Conversely, overexpression of AKR1C2 but not AKR1C3 increased the frequency of PSNE. Conclusions To our knowledge, this study is the first to identify reprogrammation of metabolic pathways in normal keratinocytes as a potential determinant of the switch from senescence to pre-transformation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700