Bifurcation-based micro-/nanoelectromechanical mass detection
详细信息    查看全文
  • 作者:V.-N. Nguyen (1)
    S. Baguet (1)
    C.-H. Lamarque (2)
    R. Dufour (1)

    1. Universit茅 de Lyon
    ; CNRS ; INSA-Lyon ; LaMCoS UMR5259 ; 69621聽 ; Villeurbanne ; France
    2. Universit茅 de Lyon
    ; ENTPE/LGCB and CNRS ; LTDS UMR5513 ; 69518聽 ; Vaulx-en-Velin ; France
  • 关键词:N/MEMS ; Mass ; sensing ; Nonlinear dynamics ; Basin of attraction ; Bifurcation ; Detection ; Quantification ; Localization
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:79
  • 期:1
  • 页码:647-662
  • 全文大小:2,027 KB
  • 参考文献:1. Ilic, B., Yang, Y., Craighead, H.: Virus detection using nanoelectromechanical devices. Appl. Phys. Lett. 85(13), 2604鈥?606 (2004). doi:10.1063/1.1794378 CrossRef
    2. Velanki, S., Ji, H.F.: Detection of feline coronavirus using microcantilever sensors. Meas. Sci. Technol. 17(11), 2964鈥?968 (2006). doi:10.1088/0957-0233/17/11/015 CrossRef
    3. Buchapudi, K., Huang, X., Yang, X., Ji, H., Thundat, T.: Microcantilever biosensors for chemicals and bioorganisms. Analyst 136, 1539鈥?556 (2011). doi:10.1039/C0AN01007C CrossRef
    4. Gimzewski, J., Gerber, C., Meyer, E., Schlittler, R.: Observation of a chemical reaction using a micromechanical sensor. Chem. Phys. Lett. 217(5鈥?), 589鈥?94 (1994). doi:10.1016/0009-2614(93)E1419-H CrossRef
    5. Thundat, T., Wachter, E., Sharp, S., Warmack, R.: Detection of mercury vapor using resonating microcantilevers. Appl. Phys. Lett. 66(13), 1695鈥?697 (1995). doi:10.1063/1.113896 CrossRef
    6. Wachter, E.A., Thundat, T.: Micromechanical sensors for chemical and physical measurements. Rev. Sci. Instrum. 66(6), 3662鈥?667 (1995). doi:10.1063/1.1145484 CrossRef
    7. Datskos, P., Rajic, S., Sepaniak, M., Lavrik, N., Tipple, C., Senesac, L., Datskou, I.: Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices. J. Vac. Sci. Technol. B 19(4), 1173鈥?179 (2001). doi:10.1116/1.1387082 CrossRef
    8. Nayfeh, A., Ouakad, H., Najar, F., Choura, S., Abdel-Rahman, E.: Nonlinear dynamics of a resonant gas sensor. Nonlinear Dyn. 59(4), 607鈥?18 (2010). doi:10.1007/s11071-009-9567-z CrossRef
    9. Turner, K., Burgner, C., Yie, Z., Holtoff, E.: Using nonlinearity to enhance micro/nanosensor performance. In: Sensors, 2012 IEEE, pp. 1鈥? (2012). doi:10.1109/ICSENS.2012.6411564
    10. Kacem, N., Hentz, S., Baguet, S., Dufour, R.: Forced large amplitude periodic vibrations of non-linear mathieu resonators for microgyroscope applications. Int. J. Non-Linear Mech. 46(10), 1347鈥?355 (2011). doi:10.1016/j.ijnonlinmec.2011.07.008 CrossRef
    11. Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7(5), 301鈥?04 (2012). doi:10.1038/nnano.2012.42 CrossRef
    12. Ilic, B., Craighead, H., Krylov, S., Senaratne, W., Ober, C., Neuzil, P.: Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95(7), 3694鈥?703 (2004). doi:10.1063/1.1650542 CrossRef
    13. Hanay, M., Kelber, S., Naik, A., Chi, D., Hentz, S., Bullard, E., Colinet, E., Duraffourg, L., Roukes, M.: Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 7, 602鈥?08 (2012). doi:10.1038/NNANO.2012.119 CrossRef
    14. Ekinci, K., Huang, X., Roukes, M.: Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84(22), 4469鈥?471 (2004). doi:10.1063/1.1755417 CrossRef
    15. Buks, E., Yurke, B.: Mass detection with a nonlinear nanomechanical resonator. Phys. Rev. E 74, 046,619 (2006). doi:10.1103/PhysRevE.74.046619
    16. Kacem, N., Baguet, S., Hentz, S., Dufour, R.: Nonlinear phenomena in nanomechanical resonators: mechanical behaviors and physical limitations. Mech. Ind. 11(6), 521鈥?29 (2010). doi:10.1051/meca/2010068
    17. Xie, W., Lee, H., Lim, S.: Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn. 31(3), 243鈥?56 (2003). doi:10.1023/A:1022914020076 CrossRef
    18. Nayfeh, A., Younis, M., Abdel-Rahman, E.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48(1鈥?), 153鈥?63 (2007). doi:10.1007/s11071-006-9079-z CrossRef
    19. Kacem, N., Baguet, S., Hentz, S., Dufour, R.: Pull-in retarding in nonlinear nanoelectromechanical resonators under superharmonic excitation. J. Comput. Nonlinear Dyn. 7(2), 021,011 (2012). doi:10.1115/1.4005435
    20. Narducci, M., Figueras, E., Lopez, M., Gracia, I., Santander, J., Ivanov, P., Fonseca, L., Can茅, C.: Sensitivity improvement of a microcantilever based mass sensor. Microelectron. Eng. 86(4鈥?), 1187鈥?189 (2009). doi:10.1016/j.mee.2009.01.022 CrossRef
    21. Dohn, S., Sandberg, R., Svendsen, W., Boisen, A.: Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems. TRANSDUCERS 鈥?5., vol. 1, pp. 636鈥?39 (2005). doi:10.1109/SENSOR.2005.1496497
    22. Xie, H., Vitard, J., Haliyo, S., R茅gnier, S.: Enhanced sensitivity of mass detection using the first torsional mode of microcantilevers. Meas. Sci. Technol. 19(5), 055,207 (2008). doi:10.1088/0957-0233/19/5/055207 .
    23. Lobontiu, N., Lupea, I., Ilic, R., Craighead, H.: Modeling, design, and characterization of multisegment cantilevers for resonant mass detection. J. Appl. Phys. 103(6), 064,306 (2008). doi:10.1063/1.2894900 .
    24. Dufour, R., Berlioz, A.: Parametric instability of a beam due to axial excitations and to boundary conditions. J. Vib. Acoust. 120(2), 461鈥?67 (1998) CrossRef
    25. Zhang, W., Baskaran, R., Turner, K.: Effect of cubic nonlinearity on auto-parametrically amplified resonant mems mass sensor. Sens. Actuators A 102(1), 139鈥?50 (2002). doi:10.1016/S0924-4247(02)00299-6 CrossRef
    26. Zhang, W., Turner, K.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sens. Actuators A 122(1), 23鈥?0 (2005). doi:10.1016/j.sna.2004.12.033 CrossRef
    27. Thomas, O., Mathieu, F., Mansfield, W., Huang, C., Trolier-McKinstry, S., Nicu, L.: Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities. Appl. Phys. Lett. 102(16), 163504 (2013). doi:10.1063/1.4802786 CrossRef
    28. Khater, M., Abdel-Rahman, E., Nayfeh, A.: A mass sensing technique for electrostatically-actuated mems. In: ASME DETC 3rd International Conference on Micro- and Nano-Systems, vol. 6, pp. 655鈥?61. San Diego, USA (2009). doi:10.1115/DETC2009-87551
    29. Younis, M., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4(2), 021,010 (2009). doi:10.1115/1.3079785
    30. Kumar, V., Boley, J.W., Yang, Y., Ekowaluyo, H., Miller, J.K., Chiu, G.T.C., Rhoads, J.F.: Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers. Appl. Phys. Lett. 98(15), 153,510 (2011). doi:10.1063/1.3574920
    31. Kumar, V., Yang, Y., Boley, J., Chiu, G.C., Rhoads, J.: Modeling, analysis, and experimental validation of a bifurcation-based microsensor. J. Microelectromech. Syst. 21(3), 549鈥?58 (2012). doi:10.1109/JMEMS.2011.2182502 CrossRef
    32. Harne, R., Wang, K.: A bifurcation-based coupled linear-bistable system for microscale mass sensing. J. Sound Vib. 333(8), 2241鈥?252 (2014). doi:10.1016/j.jsv.2013.12.017 CrossRef
    33. Guo, C., Fedder, G.K.: Bi-state control of parametric resonance. Appl. Phys. Lett. 103(18), 183,512 (2013). doi:10.1063/1.4828564
    34. Nayfeh, A., Younis, M., Abdel-Rahman, E.: Reduced-order models for MEMS applications. Nonlinear Dyn. 41(1鈥?), 211鈥?36 (2005). doi:10.1007/s11071-005-2809-9 CrossRef
    35. Kacem, N., Baguet, S., Hentz, S., Dufour, R.: Computational and quasi-analytical models for non-linear vibrations of resonant MEMS and NEMS sensors. Int. J. Non Linear Mech. 46(3), 532鈥?42 (2011). doi:10.1016/j.ijnonlinmec.2010.12.012 CrossRef
    36. Kacem, N.: Nonlinear dynamics of m&nems resonant sensors: design strategies for performance enhancement. Ph.D. thesis, INSA Lyon (2010)
    37. Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324(1鈥?), 243鈥?62 (2009). doi:10.1016/j.jsv.2009.01.054 CrossRef
    38. Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages. Nonlinear Dyn. 67(1), 1鈥?6 (2012). doi:10.1007/s11071-010-9888-y CrossRef
    39. Stambaugh, C., Chan, H.: Noise-activated switching in a driven nonlinear micromechanical oscillator. Phys. Rev. B 73, 172,302 (2006). doi:10.1103/PhysRevB.73.172302
    40. Chan, H.B., Stambaugh, C.: Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators. Phys. Rev. Lett. 99, 060,601 (2007). doi:10.1103/PhysRevLett.99.060601
    41. Dykman, M.I., Khasin, M., Portman, J., Shaw, S.W.: Spectrum of an oscillator with jumping frequency and the interference of partial susceptibilities. Phys. Rev. Lett. 105, 230,601 (2010). doi:10.1103/PhysRevLett.105.230601
    42. Miller, N., Burgner, C., Dykman, M., Shaw, S., Turner, K.: Fast estimation of bifurcation conditions using noisy response data. In: Proceedings of the SPIE 7647, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, p. 76470 (2010). doi:10.1117/12.847585
    43. Requa, M., Turner, K.: Precise frequency estimation in a microelectromechanical parametric resonator. Appl. Phys. Lett. 90(17), 173,508 (2007). doi:10.1063/1.2732172
    44. Yie, Z., Zielke, M., Burgner, C., Turner, K.: Comparison of parametric and linear mass detection in the presence of detection noise. J. Micromech. Microeng. 21(2), 025,027 (2011). doi:10.1088/0960-1317/21/2/025027
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
This paper investigates an alternative mass-sensing technique based on nonlinear micro-/nanoelectromechanical resonant sensors. The proposed approach takes advantage of multi-stability and bifurcations of the hysteretic frequency responses of the electrostatically actuated resonator. For this purpose, a reduced-order model is considered. Numerical results show that sudden jumps in amplitude make the detection of a very small mass possible. Moreover, the limit of detection can be set with the value of the operating frequency. However, when operating at fixed frequency, the study of basins of attraction indicates that this bifurcation-based mass detection does not exhibit the expected robustness. A possible improvement is proposed, based on the reinitialization of the system by a forced jump down on the hysteretic response curve. Using a frequency sweep which varies slowly in sinusoidal form solves the reinitialization problem and enables automatic real-time detection. Finally, the added mass is located on the beam by using the resonance at the first two natural frequencies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700