Phosphoinositide substrates of myotubularin affect voltage-activated Ca2+ release in skeletal muscle
详细信息    查看全文
  • 作者:Estela González Rodríguez (1)
    Romain Lefebvre (2)
    Dóra Bodnár (3)
    Claude Legrand (2)
    Peter Szentesi (3)
    János Vincze (3)
    Karine Poulard (4)
    Justine Bertrand-Michel (5)
    Laszlo Csernoch (3)
    Anna Buj-Bello (4)
    Vincent Jacquemond (2)
  • 关键词:Calcium homeostasis ; Excitation–contraction coupling ; Ryanodine receptor ; Sarcoplasmic reticulum Ca2+ release ; Phosphatidylinositol phosphate
  • 刊名:Pfl篓鹿gers Archiv - European Journal of Physiology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:466
  • 期:5
  • 页码:973-985
  • 全文大小:
  • 参考文献:1. Al-Qusairi L, Weiss N, Toussaint A, Berbey C, Messaddeq N, Kretz C, Sanoudou D, Beggs AH, Allard B, Mandel JL, Laporte J, Jacquemond V, Buj-Bello A (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibres lacking myotubularin lipid phosphatase. Proc Natl Acad Sci U S A 106:18763-8768 CrossRef
    2. Amoasii L, Hnia K, Chicanne G, Brech A, Cowling BS, Müller MM, Schwab Y, Koebel P, Ferry A, Payrastre B, Laporte J (2013) Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo. J Cell Sci 126:1806-819 CrossRef
    3. Bolis A, Zordan P, Coviello S, Bolino A (2007) Myotubularin-related (MTMR) phospholipid phosphatase proteins in the peripheral nervous system. Mol Neurobiol 35:308-16 CrossRef
    4. Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A (2008) Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol Biol Cell 19:3334-346 CrossRef
    5. Cheng H, Lederer WJ, Cannell MB (2003) Calcium sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262:740-44 CrossRef
    6. Chu A, Stefani E (1991) Phosphatidylinositol 4,5-bisphosphate-induced Ca2+ release from skeletal muscle sarcoplasmic reticulum terminal cisternal membranes. Ca2+ flux and single channel studies. J Biol Chem 266:7699-705
    7. Clark J, Anderson KE, Juvin V, Smith TS, Karpe F, Wakelam MJ, Stephens LR, Hawkins PT (2011) Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat Methods 8:267-72 CrossRef
    8. Collet C, Csernoch L, Jacquemond V (2003) Intramembrane charge movement and L-type calcium current in skeletal muscle fibres isolated from control and mdx mice. Biophys J 84:251-65 CrossRef
    9. Collet C, Pouvreau S, Csernoch L, Allard B, Jacquemond V (2004) Calcium signaling in isolated skeletal muscle fibres investigated under "Silicone Voltage-Clamp" conditions. Cell Biochem Biophys 40:225-36 CrossRef
    10. Csernoch L, Bernengo JC, Szentesi P, Jacquemond V (1998) Measurements of intracellular Mg2+ concentration in mouse skeletal muscle fibres with the fluorescent indicator mag-indo-1. Biophys J 75:957-67 CrossRef
    11. Csernoch L, Pouvreau S, Ronjat M, Jacquemond V (2008) Voltage-activated elementary calcium release events in isolated mouse skeletal muscle fibres. J Membr Biol 226:43-5 CrossRef
    12. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651-57 CrossRef
    13. Dowling JJ, Low SE, Busta AS, Feldman EL (2010) Zebrafish MTMR14 is required for excitation–contraction coupling, developmental motor function and the regulation of autophagy. Hum Mol Genet 19:2668-681 CrossRef
    14. Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372. doi:10.1371/journal.pgen.1000372 CrossRef
    15. Eisenberg BR (1983) Quantitative ultrastructure of mammalian skeletal muscle. In: Peachey LD, Adrian RH, Geiger SR (eds) Handbook of physiology sect 10: skeletal muscle, 3rd edn. Williams & Wilkins, Baltimore, MD, pp 73-12
    16. Hannon JD, Lee NK, Yandong C, Blinks JR (1992) Inositol trisphosphate (InsP3) causes contraction in skeletal muscle only under artificial conditions: evidence that Ca2+ release can result from depolarization of T-tubules. J Muscle Res Cell Motil 13:447-56 CrossRef
    17. Harkins AB, Kurebayashi N, Baylor SM (1993) Resting myoplasmic free calcium in frog skeletal muscle fibres estimated with fluo-3. Biophys J 65:865-81 CrossRef
    18. Jacquemond V (1997) Indo-1 fluorescence signals elicited by membrane depolarization in enzymatically isolated mouse skeletal muscle fibres. Biophys J 73:920-28 CrossRef
    19. Kirsch WG, Uttenweiler D, Fink RH (2001) Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle. J Physiol 537:379-89 CrossRef
    20. Kobayashi M, Muroyama A, Ohizumi Y (1989) Phosphatidylinositol 4,5-bisphosphate enhances calcium release from sarcoplasmic reticulum of skeletal muscle. Biochem Biophys Res Commun 163:1487-491 CrossRef
    21. Kong D, Dan S, Yamazaki K, Yamori T (2010) Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39. Eur J Cancer 46:1111-121 CrossRef
    22. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2:a003996 CrossRef
    23. Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175-82 CrossRef
    24. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Bio 9:99-11 CrossRef
    25. Logothetis DE, Petrou VI, Adney SK, Mahajan R (2010) Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 460:321-41 CrossRef
    26. Lukács B, Sztretye M, Almássy J, Sárk?zi S, Dienes B, Mabrouk K, Simut C, Szabó L, Szentesi P, De Waard M, Ronjat M, Jóna I, Csernoch L (2008) Charged surface area of maurocalcine determines its interaction with the skeletal ryanodine receptor. Biophys J 95:3497-509 CrossRef
    27. Monnier N, Ferreiro A, Marty I, Labarre-Vila A, Mezin P, Lunardi J (2003) A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. Hum Mol Genet 12:1171-178 CrossRef
    28. Ogawa Y, Harafuji H (1989) Ca-release by phosphoinositides from sarcoplasmic reticulum of frog skeletal muscle. J Biochem 106:864-67
    29. Ohizumi Y, Hirata Y, Suzuki A, Kobayashi M (1999) Two novel types of calcium release from skeletal sarcoplasmic reticulum by phosphatidylinositol 4,5-biphosphate. Can J Physiol Pharmacol 77:276-85 CrossRef
    30. Pierson CR, Tomczak K, Agrawal P, Moghadaszadeh B, Beggs AH (2005) X-linked myotubular and centronuclear myopathies. J Neuropathol Exp Neurol 64:555-64 CrossRef
    31. Pouvreau S, Csernoch L, Allard B, Sabatier JM, De Waard M, Ronjat M, Jacquemond V (2006) Transient loss of voltage control of Ca2+ release in the presence of maurocalcine in skeletal muscle. Biophys J 91:2206-215 CrossRef
    32. Pouvreau S, Jacquemond V (2005) Nitric oxide synthase inhibition affects sarcoplasmic reticulum Ca2+ release in skeletal muscle fibres from mouse. J Physiol 567:815-28 CrossRef
    33. Romero-Suarez S, Shen J, Brotto L, Hall T, Mo C, Valdivia HH, Andresen J, Wacker M, Nosek TM, Qu CK, Brotto M (2010) Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis. Aging 2:504-13
    34. Shen J, Yu WM, Brotto M, Scherman JA, Guo C, Stoddard C, Nosek TM, Valdivia HH, Qu CK (2009) Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca2+ homeostasis. Nat Cell Biol 11:769-76 CrossRef
    35. Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175-95 CrossRef
    36. Szabó LZ, Vincze J, Csernoch L, Szentesi P (2010) Improved spark and ember detection using stationary wavelet transforms. J Theor Biol 264:1279-292 CrossRef
    37. Zhou H, Jungbluth H, Sewry CA, Feng L, Bertini E, Bushby K, Straub V, Roper H, Rose MR, Brockington M, Kinali M, Manzur A, Robb S, Appleton R, Messina S, D'Amico A, Quinlivan R, Swash M, Müller CR, Brown S, Treves S, Muntoni F (2007) Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain 130:2024-036 CrossRef
    38. Zhou H, Lillis S, Loy RE, Ghassemi F, Rose MR, Norwood F, Mills K, Al-Sarraj S, Lane RJ, Feng L, Matthews E, Sewry CA, Abbs S, Buk S, Hanna M, Treves S, Dirksen RT, Meissner G, Muntoni F, Jungbluth H (2010) Multi-minicore disease and atypical periodic paralysis associated with novel mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 20:166-73 CrossRef
    39. Zhou H, Yamaguchi N, Xu L, Wang Y, Sewry C, Jungbluth H, Zorzato F, Bertini E, Muntoni F, Meissner G, Treves S (2006) Characterization of recessive RYR1 mutations in core myopathies. Hum Mol Genet 15:2791-803 CrossRef
  • 作者单位:Estela González Rodríguez (1)
    Romain Lefebvre (2)
    Dóra Bodnár (3)
    Claude Legrand (2)
    Peter Szentesi (3)
    János Vincze (3)
    Karine Poulard (4)
    Justine Bertrand-Michel (5)
    Laszlo Csernoch (3)
    Anna Buj-Bello (4)
    Vincent Jacquemond (2)

    1. Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
    2. Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon 1, UMR CNRS 5534, Bat. Rapha?l Dubois, 43 boulevard du 11 novembre 1918, F69622, Villeurbanne, France
    3. Department of Physiology, University of Debrecen, Debrecen, Hungary
    4. Department of Research and Development, Généthon, INSERM, Evry, France
    5. Lipidomic Core Facility, Metatoul Platform, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
  • ISSN:1432-2013
文摘
Skeletal muscle excitation–contraction (E–C) coupling is altered in several models of phosphatidylinositol phosphate (PtdInsP) phosphatase deficiency and ryanodine receptor activity measured in vitro was reported to be affected by certain PtdInsPs, thus prompting investigation of the physiological role of PtdInsPs in E–C coupling. We measured intracellular Ca2+ transients in voltage-clamped mouse muscle fibres microinjected with a solution containing a PtdInsP substrate (PtdIns(3,5)P 2 or PtdIns(3)P) or product (PtdIns(5)P or PtdIns) of the myotubularin phosphatase MTM1. No significant change was observed in the presence of either PtdIns(5)P or PtdIns but peak SR Ca2+ release was depressed by ~30% and 50% in fibres injected with PtdIns(3,5)P 2 and PtdIns(3)P, respectively, with no concurrent alteration in the membrane current signals associated with the DHPR function as well as in the voltage dependence of Ca2+ release inactivation. In permeabilized muscle fibres, the frequency of spontaneous Ca2+ release events was depressed in the presence of the three tested phosphorylated forms of PtdInsP with PtdIns(3,5)P 2 being the most effective, leading to an almost complete disappearance of Ca2+ release events. Results support the possibility that pathological accumulation of MTM1 substrates may acutely depress ryanodine receptor-mediated Ca2+ release. Overexpression of a mCherry-tagged form of MTM1 in muscle fibres revealed a striated pattern consistent with the triadic area. Ca2+ release remained although unaffected by MTM1 overexpression and was also unaffected by the PtdIns-3-kinase inhibitor LY2940002, suggesting that the 3-phosphorylated PtdIns lipids active on voltage-activated Ca2+ release are inherently maintained at a low level, inefficient on Ca2+ release in normal conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700