vConnect: perceive and interact with real world from CAVE
详细信息    查看全文
文摘
The Cave Automatic Virtual Environment (CAVE) is a fully immersive Virtual Reality (VR) system. CAVE systems have been widely used in many applications, such as architectural and industrial design, medical training and surgery plan, museums and education. However, one limitation for most of the current CAVE systems is that they are separated from the real world. The user in the CAVE is not able to sense the real world around him or her. In this paper, we propose a vConnect architecture, which aims to establish real-time bidirectional information exchange between the virtual world and the real world by utilizing the advanced technologies in cloud computing, mobile communications, wireless sensor networks, and computer vision. Specifically, we address three technical challenges in the proposed vConnect architecture. First, we propose an optimal allocation scheme for the wireless sensor networks to ensure that the data streams captured by the sensors can be delivered to the cloud servers in a reliable and prompt way. Second, we optimize the allocation of the cloud resources to ensure that the data streams sent from the clients can be processed promptly by the cloud servers at a minimal resource cost. Third, we propose to use marker-based finger interactions such that the user in the CAVE can manipulate the information in a natural and intuitive way. Fourth, we implemented a vHealth prototype, a CAVE-based real-time health monitoring system, to validate the proposed vConnect architecture. We demonstrated in the vHealth prototype that the user in the CAVE can visualize and manipulate the real-time physiological data of the patient who is being monitored, and interact with the patient.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700