Preparation of cellulosic fibers with biological activity by immobilization of trypsin on periodate oxidized viscose fibers
详细信息    查看全文
  • 作者:Tanja Nikolic (1) (2)
    Jovana Milanovic (1)
    Ana Kramar (1)
    Zivomir Petronijevic (3)
    Ljubisa Milenkovic (2)
    Mirjana Kostic (1)
  • 关键词:Viscose yarn ; Periodate oxidation ; Tensile strength ; BSA ; Trypsin ; Immobilization ; Storage stability
  • 刊名:Cellulose
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:21
  • 期:3
  • 页码:1369-1380
  • 全文大小:
  • 参考文献:1. Adriano WS, Filho EHC, Silva JA, Giordano RLC, Gon?alves LRB (2005) Stabilization of penicillin G acylase by immobilization on glutaraldehyde-activated chitosan. Braz J Chem Eng 22:529-38 CrossRef
    2. Anirudhan TS, Rejeena SR (2012) Adsorption and hydrolytic activity of trypsin on a carboxylate-functionalized cation exchanger prepared from nanocellulose. J Colloid Interface Sci 381:125-36 CrossRef
    3. Calvini P, Conio G, Lorenzoni M, Pedemonte E (2004) Viscometric determination of dialdehyde content in periodate oxycellulose. Part I. Methodology. Cellulose 11:99-07 CrossRef
    4. Calvini P, Conio G, Princi E, Vicini S, Pedemonte E (2006) Viscometric determination of dialdehyde content in periodate oxycellulose. Part II. Topochemistry of oxidation. Cellulose 13:571-79 CrossRef
    5. Cao L (2005) Carrier-bound immobilized enzymes: principles, applications and design. Wiley-VCH, Weinheim CrossRef
    6. Cavalcante AHM, Carvalho LB Jr, Carneiro-da-Cunha MG (2006) Cellulosic exopolysaccharide produced by / Zoogloea sp. as a film support for trypsin immobilization. Biochem Eng J 29:258-61 CrossRef
    7. Costa SA, Azevedo HS, Reis RL (2005) Enzyme immobilization in biodegradable polymers for biomedical applications. In: Reis RL, Román JS (eds) Biodegradable systems in tissue engineering and regenerative medicine. CRC Press, Boca Raton, pp 358-86
    8. Esquisabel A, Hernández RM, Gascón AR, Pedraz JL (2006) Immobilized enzymes for biomedical applications. In: Guisan JM (ed) Immobilization of enzymes and cells. Humana Press, Totowa NJ, pp 283-94 CrossRef
    9. Fan QG, Lewis DM, Tapley KN (2001) Characterization of cellulose aldehyde using Fourier transform infrared spectroscopy. J Appl Polym Sci 82:1195-202 CrossRef
    10. Fernandez-Lafuente R, Cowan DA, Wood ANP (1995) Hyperstabilization of a thermophilic esterase by multipoint covalent attachment. Enzyme Microb Technol 17:366-72 CrossRef
    11. Hon DN-S (1996) Cellulose and its derivatives: structures, reactions, and medical uses. In: Dumitriu S (ed) Polysaccharides in medical application. Marcel Dekker, New York, pp 87-05
    12. Janjic S, Kostic M, Vucinic V, Dimitrijevic S, Popovic K, Ristic M, Skundric P (2009) Biologically active fibers based on chitosan-coated lyocell fibers. Carbohydr Polym 78:240-46 CrossRef
    13. Keil B (1971) Trypsin. In: Boyer PD (ed) The enzymes, III hydrolysis: peptide bonds. Academic Press, New York, pp 250-76
    14. Kim U-J, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488-92 CrossRef
    15. Kim U-J, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56:7-0 CrossRef
    16. Koblyakov A (1989) Laboratory practice in the study of textile materials. Mir Publishers, Moscow
    17. Kotel’nikova NE, Mikhailova SA, Vlasova EN (2007) Immobilization of proteolytic enzymes trypsin and α-chymotrypsin to cellulose matrix. Rus J Appl Chem 80:322-29 CrossRef
    18. Kovalenko GA (1998) Immobilized proteolytic enzymes for external use. Pharm Chem J 32:213-16 CrossRef
    19. Kruger NJ (2002) The Bradford method for protein quantitation. In: Walker JM (ed) The protein protocols handbook. Humana Press, Totowa NJ, pp 15-1 CrossRef
    20. Kumar A, Gupta MN (1998) Immobilization of trypsin on an enteric polymer Eudragit S-100 for the biocatalysis of macromolecular substrate. J Mol Catal B Enzym 5:289-94 CrossRef
    21. Kumar V, Yang T (2002) HNO3/H3PO4–NaNO2 mediated oxidation of cellulose-preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohydr Polym 48:403-12 CrossRef
    22. Laurence S, Bareille R, Baquey C, Fricain JC (2005) Development of a resorbable macroporous cellulosic material used as hemostatic in an osseous environment. J Biomed Mater Res 73A:422-29 CrossRef
    23. Li W, Chen B, Tan T (2011) Comparative study of the properties of lipase immobilized on nonwoven fabric membranes by six methods. Process Biochem 46:1358-365 CrossRef
    24. Liang ZP, Feng YQ, Meng SX, Liang ZY (2005) Preparation and properties of urease immobilized onto glutaraldehyde cross-linked chitosan beads. Chin Chem Lett 16:135-38
    25. Liu XD, Nishi N, Tokura S, Sakairi N (2001) Chitosan coated cotton fiber: preparation and physical properties. Carbohydr Polym 44:233-38 CrossRef
    26. Liubich LS, Vlasov GP, Vol’f LA (1980) Effect of spacer arms on the properties of trypsin and papain immobilized on viscose fibers. Prikl Biokhim Mikrobiol 16:218-21
    27. Maekawa E, Koshijima T (1984) Properties of 2,3-dicarboxy cellulose combined with various metallic ions. J Appl Polym Sci 29:2289-297 CrossRef
    28. Mikes O, Holeysovsky V, Tomasek V, Sorm F (1966) Covalent structure of bovine trypsinogen. The position of the remaining amides. Biochem Biophys Res Commun 24:346-52 CrossRef
    29. Monier M, El-Sokkary AMA (2012) Modification and characterisation of cellulosic cotton fibers for efficient immobilization of urease. Int J Biol Macromol 51:18-4 CrossRef
    30. Monteiro FMF, Silva GMM, Silva JBR, Porto CS, Carvalho LB Jr, Lima-Filho JL, Carneiro-Le?o AMA, Carneiro-da-Cunha MG, Porto ALF (2007) Immobilization of trypsin on polysaccharide film from / Anacardium occidentale l . and its application as cutaneous dressing. Process Biochem 42:884-88 CrossRef
    31. Nevell TP (1957) The mechanism of the oxidation of cellulose by periodate. J Text Inst Trans 48:T484–T494 CrossRef
    32. Nikolic T, Kostic M, Praskalo J, Pejic B, Petronijevic Z, Skundric P (2010) Sodium periodate oxidized cotton yarn as carrier for immobilization of trypsin. Carbohydr Polym 82:976-81 CrossRef
    33. Nouaimi M, M?schel K, Bisswanger H (2001) Immobilization of trypsin on polyester fleece via different spacers. Enzyme Microb Technol 29:567-74 CrossRef
    34. Ohta K, Makinen KK, Loesche WJ (1986) Purification and characterization of an enzyme produced by / Treponema denticola capable of hydrolyzing synthetic trypsin substrates. Infect Immun 53:213-20
    35. Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61:662-67 CrossRef
    36. Potthast A, Schiehser S, Rosenau T, Kostic M (2009) Oxidative modifications of cellulose in the periodate system: reduction and beta-elimination reactions. Holzforschung 63:12-7 CrossRef
    37. Praskalo J, Kostic M, Potthast A, Popov G, Pejic B, Skundric P (2009) Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers. Carbohydr Polym 77:791-98 CrossRef
    38. Princi E, Vicini S, Pedemonte E, Proietti N, Capitani D, Segre AL, D’Orazio L, Gentile G, Polcaro C, Martuscelli E (2004) Physical and chemical characterisation of cellulose based textiles modified by periodate oxidation. Macromol Symp 218:343-52
    39. RoyChowdhury P, Kumar V (2006) Fabrication and evaluation of porous 2,3-dialdehydecellulose membrane as a potential biodegradable tissue-engineering scaffold. J Biomed Mater Res 76A:300-09 CrossRef
    40. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983-989 CrossRef
    41. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23-0 CrossRef
    42. Siller M, Roggenstein W, Rosenau T, Potthast A (2013) Functionalisation of viscose fibres. Lenzing Ber 91:84-8
    43. Varma AJ, Kulkarni MP (2002) Oxidation of cellulose under controlled conditions. Polym Degrad Stab 77:25-7 CrossRef
    44. Villalonga R, Villalonga ML, Gómez L (2000) Preparation and functional properties of trypsin modified by carboxymethylcellulose. J Mol Catal B Enzym 10:483-90 CrossRef
    45. Vol’f LA (1980) Volokna s osobymi svoistvami. Khimiya, Moskva
    46. Vol’f LA, Shamolina II, Khokhlova VA (1979) Production, properties, and applications of enzyme-active fibres. Fibre Chem 11:262-68 CrossRef
    47. Xi F, Wu J, Jia Z, Lin X (2005) Preparation and characterization of trypsin immobilized on silica gel supported macroporous chitosan bead. Process Biochem 40:2833-840 CrossRef
    48. Yudanova TN, Reshetov IV (2006) Drug synthesis methods and manufacturing technology. Modern wound dressings: making and properties. II. Wound dressings containing immobilized proteolytic enzymes (a review). Pharm Chem J 40:430-34 CrossRef
    49. Zelenetskii AN, Akopova TA, Kildeeva NR, Vikhoreva GA, Obolonkova ES, Zharov AA (2003) Immobilization of trypsin on polysaccharides upon intense mechanical treatment. Rus Chem Bull 52:2073-077 CrossRef
    50. Zhou QZK, Chen XD (2001) Immobilization of β-galactosidase on graphite surface by glutaraldehyde. J Food Eng 48:69-4 CrossRef
    51. Zhukovskii VA (2005) Current status and prospects for development and production of biologically active fibre material for medical applications. Fibre Chem 37:352-55 CrossRef
  • 作者单位:Tanja Nikolic (1) (2)
    Jovana Milanovic (1)
    Ana Kramar (1)
    Zivomir Petronijevic (3)
    Ljubisa Milenkovic (2)
    Mirjana Kostic (1)

    1. Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia
    2. College of Textile Leskovac, Vilema Pusmana 17, 16000, Leskovac, Serbia
    3. Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000, Leskovac, Serbia
  • ISSN:1572-882X
文摘
In this study, a biologically active fibrous material was designed by immobilizing trypsin on viscose fibers. The viscose yarn was first oxidized with sodium periodate to produce aldehyde groups and then employed as a support for subsequent immobilization of trypsin through bovine serum albumin. The oxidation by sodium periodate caused changes in the chemical and physical properties of the modified yarn samples, which were evaluated by determining the aldehyde group content, fineness and tensile strength of yarn. The viscose fibers oxidized under the most severe conditions (0.4?% NaIO4, 360?min) exhibited the maximum amount of introduced aldehyde groups (1.284?mmol/g), but also the highest decrease in tensile strength. The trypsin activity was assayed with N-α-benzoyl-DL-arginine p-nitroanilide hydrochloride, whereas the amount of bound trypsin was determined by Bradford method. Trypsin immobilized on oxidized viscose yarn retained 97.3 and 83.8?% of the initial activity over 60?days of storage at 4 and 25?°C, respectively, and remained firmly attached to the carrier. The potential application of obtained bioactive fibers is in the treatment of wounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700