A new hybrid artificial intelligence approach to predicting global thermal comfort of stretch knitted fabrics
详细信息    查看全文
  • 作者:Faten Fayala ; Hamza Alibi ; Abdelmajid Jemni ; Xianyi Zeng
  • 关键词:Thermal comfort ; Comfort index ; Desirability functions ; Knit fabrics ; Artificial neural network ; Virtual leave one out
  • 刊名:Fibers and Polymers
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:16
  • 期:6
  • 页码:1417-1429
  • 全文大小:459 KB
  • 参考文献:1.Y. Li, “The Science of Clothing Comfort- p.135, The Textile Institute, UK, 2001.
    2.N. R. S. Hollies and R. F. G. Goldman, “Clothing Comfort-Interaction of Thermal, Ventilation, Construction and Assessment Factors- p.189, Ann Arbor Science Publishers, Michigan, 1975.
    3.K. Slater, J. Text. Inst., 77, 157 (1986).View Article
    4.Y. Li, Text. Prog., 31, 1 (2001).View Article
    5.H. Zhang, Ph. D. Dissertation, UCB, Berkeley, 2003.
    6.D. A. Watkins and K. Slater, J. Text. Inst., 72, 11 (1981).View Article
    7.M. S. Parmar and S. K. Srivastava, Ind. J. Fiber. Text. Res., 24, 41 (1999).
    8.L. Schacher, D. C. Adolphe, and J. Y. Drean, Int. J. Cloth. Sci. Tech., 12, 84 (2000).View Article
    9.M. J. Pac, M. A. Bueno, and M. Renner, Text. Res. J., 71, 806 (2001).View Article
    10.B. Le Pechoux, R. M. Laing, Y. Li, A. Bookset, T. K. Ghosh, and G. G. Sleivert, “The Science of Clothing Comfort- p.138, The Textile Institute, Manchester, 2001.
    11.N. Ozdil, A. Marmarali, and D. Kretzschmar, Int. J. Therm. Sci., 46, 1318 (2007).View Article
    12.A. Das and S. M. Ishtiaque, J. Text. Appar. Tech. Manag., 3, 1 (2004).
    13.G. Oz?elik, A. ?ay, and E. Kirtay, Fibres Text. East. Eur., 15, 55 (2007).
    14.N. Ucar and T. Yilmaz, Fibres Text. East. Eur., 12, 34 (2005).
    15.N. Oglakcioglu and A. Marmarali, Fibres Text. East. Eur., 15, 94 (2007).
    16.R. Ciukas, A. Jovita, and K. Paulius, Fibres Text. East. Eur., 18, 89 (2010).
    17.G. D. ?ajn, K. Dimitrovski, and K. M. Bizja, Text. Res. J., 82, 1498 (2012).View Article
    18.S. Tezel and Y. Kavusturan, Text. Res. J., 78, 966 (2008).View Article
    19.S. B. Stankovic, D. Popovic, and G. B. Poparic, Polym. Test., 27, 41 (2008).View Article
    20.C. A. Pavko and E. U. Stankovic, Acta Chim. Slov., 57, 957 (2010).
    21.S. E. G. Jeguirim, A. B. Dhouieb, M. Sahnoun, M. Cheikhrouhou, L. Schacher, and D. Adolphe, J. Intell. Manuf., 22, 873 (2011).View Article
    22.D. Bhattacharjee and V. K. Kothari, Text. Res. J., 77, 4 (2007).View Article
    23.F. Fayala, H. Alibi, A. Jemni, and X. Zeng, J. Eng. Fiber. Fabr., 3, 53 (2008).
    24.A. Majumdar, J. Text. Inst., 102, 752 (2011).View Article
    25.H. Alibi, F. Fayala, A. Jemni, and X. Zeng, Special Topics & Reviews in Porous Media, 3, 35 (2012).View Article
    26.H. Alibi, F. Fayala, A. Jemni, and X. Zeng, J. Appl. Sci., 12, 2283 (2012).View Article
    27.H. Alibi, F. Fayala, N. Bhouri, A. Jemni, and X. Zeng, J. Text. Inst., 104, 766 (2013).View Article
    28.A. S. W. Wong, Y. Li, and P. K. W. Yeung, Text. Res. J., 73, 31 (2003).View Article
    29.A. S. W. Wong, Y. Li, and P. K. W. Yeung, Fiber J., 59, 11 (2003).
    30.A. S. W. Wong, Y. Li, and P. K. W. Yeung, Text. Res. J., 74, 13 (2004).View Article
    31.A. S. W. Wong, Y. Li, and P. K. W. Yeung, J. Text. Inst., 93, 108 (2002).View Article
    32.C. Vigneswaran, K. Chandrasekaran, and P. Senthilkumar, J. Ind. Text., 38, 289 (2009).View Article
    33.A. Koblyakov, “Laboratory Practice in the Study of Textile Materials- p.384, Mir Publishers, Moscow, 1989.
    34.B. Das, V. K. Kothari, R. Fanguiero, and M. De Araujo, Fiber. Polym., 9, 225 (2008).View Article
    35.L. Hes, Vlakna a Textil, 7, 91 (2000).
    36.L. Hes, Int. J. Cloth. Sci. Tech., 11, 105 (1999).View Article
    37.L. Hes, J. Hanzl, I. Dolezal, and Z. Miklas, Melliand Text. Int., 71, 679 (1990).
    38.L. Hes and I. Dolezal, J. Text. Mash. Soc. Jpn., 42, 124 (1989).View Article
    39.N. Ucar and T. Yilmaz, Fibres Text. East. Eur., 12, 34 (2005).
    40.G. Derringer and R. Suich, J. Qual. Technol., 12, 214 (1980).
    41.Y. Oussar, G. Monari, and G. Dreyfus, Neural Comp., 16, 419 (2004).View Article
    42.G. Monari and G. Dreyfus, Neural Comp., 14, 1481 (2002).View Article
    43.F. Fayala, H. Alibi, A. Jemni, and X. Zeng, Fiber. Polym., 15, 855 (2014).View Article
    44.M. Tushir and S. Srivastava, Appl. Soft Comp., 10, 381 (2010).View Article
    45.U. Teeboonma, J. Tiansuwan, and S. Soponronnarit, J. Food. Eng., 59, 369 (2003).View Article
    46.J. R. Dutta, P. K. Dutta, and R. Banerjee, Process Biochem., 39, 2193 (2004).View Article
    47.D. S. Lee and Y. R. Pyun, Dry. Technol., 11, 1025 (1993).View Article
    48.D. M. Elustondo, A. S. Mujumdar, and M. J. Urbicain, Dry. Technol., 20, 381 (2002).View Article
    49.J. A. Hernández, D. Colorado, O. Cortés-Aburto, Y. El Hamzaoui, V. Velazquez, and B. Alonso, Appl. Therm. Eng., 50, 1399 (2013).View Article
    50.J. Labus, J. A. Hernández, J. C. Bruno, and A. Coronas, Renew. Energy, 39, 471 (2012).View Article
    51.O. Cortés, G. Urquiza, and J. A. Hernández, Appl. Energy, 86, 2487 (2009).View Article
    52.J. A. Hernández, Food Control, 20, 435 (2009).View Article
    53.Y. El-Hamzaoui, J. A. Hernández, S. Silva-Martínez, A. Bassam, A. álvarez, and C. Lizama-Bahena, Desalination, 277, 325 (2011).View Article
    54.M. Laidi and S. Hanini, Int. J. Refreg., 36, 247 (2013).View Article
  • 作者单位:Faten Fayala (1)
    Hamza Alibi (1)
    Abdelmajid Jemni (1)
    Xianyi Zeng (2)

    1. Laboratory of Study of the Thermal and Energy Systems (LESTE), National School Engineers of Monastir, University of Monastir, Monastir, 5019, Tunisia
    2. GEMTEX Research Laboratory, National School of Arts and Textiles Industries (ENSAIT), University North Lille of France, Lille, 30329-59056, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
  • 出版者:The Korean Fiber Society
  • ISSN:1875-0052
文摘
Today numerous consumers consider thermal comfort to be one of the most significant attributes when purchasing textile and apparel products, so there is a need to develop a model able to simulate objectively the consumers-perception. The global thermal comfort of stretch knitted fabrics is a multi-criteria phenomenon that requires the satisfaction of several properties at the same time. In this paper, we used the desirability functions to evaluate the satisfaction degree of global thermal comfort. Statistical method was used to investigate the interrelationship among knit thermo-physical properties, and group them into factors. Two models of artificial neural network (general and special) have been set up to predict the global thermal comfort from structural parameters (inputs) of knitted fabrics made from pure yarn cotton (cellulose) and viscose (regenerated cellulose) fibers and plated knitted with elasthane (Lycra) fibers. A virtual leave one out approach dealing with over fitting phenomenon and allowing the selection of the optimal neural network architecture was used. By combining the strengths of statistics and fuzzy logic (data reduction and information summation) also a neural network (self-learning ability), hybrid model was developed to simulate the consumer thermal comfort perception. After that, ANN model is inverted. With a required output value and some input parameters it is possible to calculate the unknown optimum input parameter. Finally, this forecasting can help industrials to anticipate the consumer’s taste. Thus, they can adjust the knitting production parameter to reach the desired global thermal comfort to satisfy this consumer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700